4 resultados para ANODIZATION LITHOGRAPHY
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In Chapter 1 I will present a brief introduction on the state of art of nanotechnologies, nanofabrication techniques and unconventional lithography as a technique to fabricate the novel electronic device as resistive switch so-called memristor is shown. In Chapter 2 a detailed description of the main fabrication and characterization techniques employed in this work is reported. Chapter 3 parallel local oxidation lithography (pLOx) describes as a main technique to obtain accurate patterning process. All the effective parameters has been studied and the optimized condition observed to highly reproducible with excellent patterned nanostructures. The effect of negative bias, calls local reduction (LR) studied. Moreover, the use of AC bias shows faster patterning process respect to DC bias. In Chapter 4 (metal/ e-SiO2/ Si nanojunction) it is shown how the electrochemical oxide nanostructures by using pLOx can be used in the fabrication of novel devices call memristor. We demonstrate a new concept, based on conventional materials, where the lifetime problem is resolved by introducing a “regeneration” step, which restores the nano-memristor to its pristine condition by applying an appropriate voltage cycle. In Chapter 5 (Graphene/ e-SiO2/ Si), Graphene as a building block material is used as an electrode to selectively oxidize the silicon substrate by pLOx set up for the fabrication of novel resistive switch device. In Chapter 6 (surface architecture) I will show another application of pLOx in biotechnology is shown. So the surface functionalization combine with nano-patterning by pLOx used to design a new surface to accurately bind biomolecules with the possibility of studying those properties and more application in nano-bio device fabrication. So, in order to obtain biochips, electronic and optical/photonics devices Nano patterning of DNA used as scaffolds to fabricate small functional nano-components.
Resumo:
The aim of my dissertation is to provide new knowledge and applications of microfluidics in a variety of problems, from materials science, devices, and biomedicine, where the control on the fluid dynamics and the local concentration of the solutions containing the relevant molecules (either materials, precursors, or biomolecules) is crucial. The control of interfacial phenomena occurring in solutions at dierent length scales is compelling in nanotechnology for devising new sensors, molecular electronics devices, memories. Microfluidic devices were fabricated and integrated with organic electronics devices. The transduction involves the species in the solution which infills the transistor channel and confined by the microfluidic device. This device measures what happens on the surface, at few nanometers from the semiconductor channel. Soft-lithography was adopted to fabricate platinum electrodes, starting from platinum carbonyl precursor. I proposed a simple method to assemble these nanostructures in periodic arrays of microstripes, and form conductive electrodes with characteristic dimension of 600 nm. The conductivity of these sub-microwires is compared with the values reported in literature and bulk platinum. The process is suitable for fabricating thin conductive patterns for electronic devices or electrochemical cells, where the periodicity of the conductive pattern is comparable with the diusion length of the molecules in solution. The ordering induced among artificial nanostructures is of particular interest in science. I show that large building blocks, like carbon nanotubes or core-shell nanoparticles, can be ordered and self-organised on a surface in patterns due to capillary forces. The eective probability of inducing order with microfluidic flow is modeled with finite element calculation on the real geometry of the microcapillaries, in soft-lithographic process. The oligomerization of A40 peptide in microconfined environment represents a new investigation of the extensively studied peptide aggregation. The added value of the approach I devised is the precise control on the local concentration of peptides together with the possibility to mimick cellular crowding. Four populations of oligomers where distinguished, with diameters ranging from 15 to 200 nm. These aggregates could not be addresses separately in fluorescence. The statistical analysis on the atomic force microscopy images together with a model of growth reveal new insights on the kinetics of amyloidogenesis as well as allows me to identify the minimum stable nucleus size. This is an important result owing to its implications in the understanding and early diagnosis and therapy of the Alzheimer’s disease
Resumo:
Regenerative medicine and tissue engineering attempt to repair or improve the biological functions of tissues that have been damaged or have ceased to perform their role through three main components: a biocompatible scaffold, cellular component and bioactive molecules. Nanotechnology provide a toolbox of innovative scaffold fabrication procedures in regenerative medicine. In fact, nanotechnology, using manufacturing techniques such as conventional and unconventional lithography, allows fabricating supports with different geometries and sizes as well as displaying physical chemical properties tunable over different length scales. Soft lithography techniques allow to functionalize the support by specific molecules that promote adhesion and control the growth of cells. Understanding cell response to scaffold, and viceversa, is a key issue; here we show our investigation of the essential features required for improving the cell-surface interaction over different scale lengths. The main goal of this thesis has been to devise a nanotechnology-based strategy for the fabrication of scaffolds for tissue regeneration. We made four types of scaffolds, which are able to accurately control cell adhesion and proliferation. For each scaffold, we chose properly designed materials, fabrication and characterization techniques.
Resumo:
In the search to understand the interaction between cells and their underlying substrates, life sciences are beginning to incorporate micro and nano-technology based tools to probe, measure and improve cellular behavior. In this frame, patterned surfaces provide a platform for highly defined cellular interactions and, in perspective, they offer unique advantages for artificial implants. For these reasons, functionalized materials have recently become a central topic in tissue engineering. Nanotechnology, with its rich toolbox of techniques, can be the leading actor in the materials patterning field. Laser assisted methods, conventional and un-conventional lithography and other patterning techniques, allow the fabrication of functional supports with tunable properties, either physically, or topographically and chemically. Among them, soft lithography provides an effective (and low cost) strategy for manufacturing micro and nanostructures. The main focus of this work is the use of different fabrication approaches aiming at a precise control of cell behavior, adhesion, proliferation and differentiation, through chemically and spatially designed surfaces.