9 resultados para AMYOTROPHIC-LATERAL-SCLEROSIS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.
Resumo:
The interest in human intestinal microbiota has increased in the last 20 years and significant advances have been achieved with regard to its composition and functions. The gut microbiota contributes to the maintenance of the host health status and, since alterations in the gut microbiota have been involved in the pathogenesis/progression of some diseases, several studies have focused on the manipulation of its composition. Probiotics are a strategy to maintain/restore the correct balance of gut microbial population and to prevent/treat diseases. The aim of this thesis was to explore the possibility of probiotic supplementation for the prevention/treatment of human diseases and the related study of the intestinal microbial environment. After reviewing studies concerning the use of Bifidobacterium breve as probiotic in paediatric diseases, the effectiveness of a probiotic formulation consisting of two strains of B. breve was assessed in paediatric subjects for the prevention or alleviation of gastrointestinal disorders, including coeliac disease and paediatric obesity. As the emerging role of gut microbiota in neurological diseases, the intestinal microbial environment in amyotrophic lateral sclerosis patients compared to healthy controls and the effects of a probiotic administration were examined. Considering the role of viruses in shaping gut microbiota, gut bacteriophages and bacterial community of preterm infants were investigated. The results evidenced differences in gut microbial composition of healthy controls and diseased subjects in coeliac and amyotrophic lateral sclerosis patients. The probiotic approach was effective in restoring the microbial composition in the former, whereas, in the latter, the influence was focused only on some microbial groups. The probiotic intervention was effective in improving the glyco-insulinemic profile in obese children and in preventing gastrointestinal disorders in healthy newborns. The study of the bacterial and phage composition in preterm infants suggested a transkingdom interplay between bacteria and viruses with a reciprocal influence on their composition.
Resumo:
Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance technique that can quantify in vivo biomarkers of pathology, such as alteration in iron and myelin concentration. It allows for the comparison of magnetic susceptibility properties within and between different subject groups. In this thesis, QSM acquisition and processing pipeline are discussed, together with clinical and methodological applications of QSM to neurodegeneration. In designing the studies, significant emphasis was placed on results reproducibility and interpretability. The first project focuses on the investigation of cortical regions in amyotrophic lateral sclerosis. By examining various histogram susceptibility properties, a pattern of increased iron content was revealed in patients with amyotrophic lateral sclerosis compared to controls and other neurodegenerative disorders. Moreover, there was a correlation between susceptibility and upper motor neuron impairment, particularly in patients experiencing rapid disease progression. Similarly, in the second application, QSM was used to examine cortical and sub-cortical areas in individuals with myotonic dystrophy type 1. The thalamus and brainstem were identified as structures of interest, with relevant correlations with clinical and laboratory data such as neurological evaluation and sleep records. In the third project, a robust pipeline for assessing radiomic susceptibility-based features reliability was implemented within a cohort of patients with multiple sclerosis and healthy controls. Lastly, a deep learning super-resolution model was applied to QSM images of healthy controls. The employed model demonstrated excellent generalization abilities and outperformed traditional up-sampling methods, without requiring a customized re-training. Across the three disorders investigated, it was evident that QSM is capable of distinguishing between patient groups and healthy controls while establishing correlations between imaging measurements and clinical data. These studies lay the foundation for future research, with the ultimate goal of achieving earlier and less invasive diagnoses of neurodegenerative disorders within the context of personalized medicine.
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
The aim of this Thesis is to investigate the effect of heterogeneities within the subducting plate on the dynamics of subduction. In particular, I study the motion of the trench for oceanic and continental subduction, first, separately, and, then, together in the same system to understand how they interact. The understanding of these features is fundamental to reconstruct the evolution of complex subduction zones, such as the Central Mediterranean. For this purpose, I developed 2D and 3D numerical models of oceanic and continental subduction where the rheological, geometrical and compositional properties of the plates are varied. In these models, the trench and the overriding plate move self-consistently as a function of the dynamics of the system. The effect of continental subduction on trench migration is largely investigated. Results from a parametric study showed that despite different rheological properties of the plates, all models with a uniform continental crust share the same kinematic behaviour: the trench starts to advance once the continent arrives at the subduction zone. Hence, the advancing mode in continental collision scenarios is at least partly driven by an intrinsic feature of the system. Moreover, the presence of a weak lower crust within the continental plate can lead to the occurrence of delamination. Indeed, by changing the viscosity of the lower crust, both delamination and slab detachment can occur. Delamination is favoured by a low viscosity value of the lower crust, because this makes the mechanical decoupling easier between crust and lithospheric mantle. These features are observed both in 2D and 3D models, but the numerical results of the 3D models also showed that the rheology of the continental crust has a very strong effect on the dynamics of the whole system, since it influences not only the continental part of plate but also the oceanic sides.
Resumo:
Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. These instability phenomena can become particularly risky, when historical towns and cultural heritage sites built on the top of them are endangered. Neverthless, the mechanisms controlling the developing of related instabilities, i.e. toppling and rock falls, at the edges of rock plateaux are not fully understood yet. In addition, the groundwater flow path developing at the contact between the more permeable units, i.e. the jointed rock slab, and the relatively impermeable clay-rich units have not been already studied in details, even if they may play a role in this kind of instability processes, acting as eventual predisposing and/or triggering factors. Field survey, Terrestrial Laser Scanner and Close Range Photogrammetry techniques, laboratory tests on the involved materials, hydrogeological monitoring and modelling, displacements evaluation and stability analysis through continuum and discontinuum numerical codes have been performed on the San Leo case study, with the aim to bring further insights for the understanding and the assessment of the slope processes taking place in this geological context. The current research permitted to relate the aquifer behaviour of the rocky slab to slope instability processes. The aquifer hosted in the fractured slab leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales led to the progressive undermining of the slab. The cliff becomes progressively unstable due to undermining and undergoes large-scale landslides due to fall or topple.