2 resultados para AIR ACTIVITY
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work, in-situ measurements of aerosol chemical composition, particle number size distribution, cloud-relevant properties and ground-based cloud observations were combined with high-resolution satellite sea surface chlorophyll-a concentration and air mass back-trajectory data to investigate the impact of the marine biota on aerosol physico-chemical and cloud properties. Studies were performed over the North-Eastern Atlantic Ocean, the central Mediterranean Sea, and the Arctic Ocean, by deploying both multi-year datasets and short-time scale observations. All the data were chosen to be representative of the marine atmosphere, reducing to a minimum any anthropogenic input. A relationship between the patterns of marine biological activity and the time evolution of marine aerosol properties was observed, under a variety of aspects, from chemical composition to number concentration and size distribution, up to the most cloud‐relevant properties. At short-time scales (1-2 months), the aerosol properties tend to respond to biological activity variations with a delay of about one to three weeks. This delay should be considered in model applications that make use of Chlorophyll-a to predict marine aerosol properties at high temporal resolution. The impact of oceanic biological activity on the microphysical properties of marine stratiform clouds is also evidenced by our analysis, over the Eastern North Atlantic Ocean. Such clouds tend to have a higher number of smaller cloud droplets in periods of high biological activity with respect to quiescent periods. This confirms the possibility of feedback interactions within the biota-aerosol-cloud climate system. Achieving a better characterization of the time and space relationships linking oceanic biological activity to marine aerosol composition and properties may significantly impact our future capability of predicting the chemical composition of the marine atmosphere, potentially contributing to reducing the uncertainty of future climate predictions, through a better understanding of the natural climate system.
Resumo:
Objective: The aims of this thesis were to analyze the application mode of the universal adhesives (UA) and to give instructions for clinical procedures. The etching mode of UA on the bond strength to dentin and on the risk of retention, marginal discoloration, marginal adaptation and post-operative sensitivity (POS) was analyzed by two systematic reviews. Three in vitro studies were conducted: 1) evaporation mode of a UA on coronal dentin; 2) cementation approach on radicular dentin; 3) adhesion of metal brackets to enamel. Materials and methods: Two systematic review were conducted firstly, then in vitro study to investigate the evaporation mode in presence or not of pulpal pressure by means of μTBS, and the enzymatic activity using in situ zymography, at T0 and T6. The cementation of a fiber into radicular dentin with different resin-cements was studied, by push-out bond strength evaluation. Orthodontic brackets were cemented according to 4 adhesive protocols and shear bond strength test was conducted. Two adhesive removal techniques were evaluated, and spectrophotometry was used. Results: The probability of POS occurrence was less in SE. SEE approach seems to perform better than SE. Air-drying resulted in higher μTBS. Suction-evaporation, aging and ER mode increased MMPs activity. Differences in NL expression were present at T0 for fiber post study, and the aging produced an increase in marginal infiltration. Brackets cemented with new universal cement with previous etchant application showed good μTBS values. Conclusion: SEE performed better than SE and TE with UA in terms of uTBS. Evaporating with air-drying is better for UA in terms of uTBS and enzymatic activity. Aging and choice of resin cement for cementation of fiber posts influenced the PBS. Brackets cementation with a new resin- cement seems to offer the highest bond strength and leaves more cement remnants after the bracket removal.