12 resultados para AGN ComptonThick

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasars and AGN play an important role in many aspects of the modern cosmology. Of particular interest is the issue of the interplay between AGN activity and formation and evolution of galaxies and structures. Studies on nearby galaxies revealed that most (and possibly all) galaxy nuclei contain a super-massive black hole (SMBH) and that between a third and half of them are showing some evidence of activity (Kormendy and Richstone, 1995). The discovery of a tight relation between black holes mass and velocity dispersion of their host galaxy suggests that the evolution of the growth of SMBH and their host galaxy are linked together. In this context, studying the evolution of AGN, through the luminosity function (LF), is fundamental to constrain the theories of galaxy and SMBH formation and evolution. Recently, many theories have been developed to describe physical processes possibly responsible of a common formation scenario for galaxies and their central black hole (Volonteri et al., 2003; Springel et al., 2005a; Vittorini et al., 2005; Hopkins et al., 2006a) and an increasing number of observations in different bands are focused on collecting larger and larger quasar samples. Many issues remain however not yet fully understood. In the context of the VVDS (VIMOS-VLT Deep Survey), we collected and studied an unbiased sample of spectroscopically selected faint type-1 AGN with a unique and straightforward selection function. Indeed, the VVDS is a large, purely magnitude limited spectroscopic survey of faint objects, free of any morphological and/or color preselection. We studied the statistical properties of this sample and its evolution up to redshift z 4. Because of the contamination of the AGN light by their host galaxies at the faint magnitudes explored by our sample, we observed that a significant fraction of AGN in our sample would be missed by the UV excess and morphological criteria usually adopted for the pre-selection of optical QSO candidates. If not properly taken into account, this failure in selecting particular sub-classes of AGN could, in principle, affect some of the conclusions drawn from samples of AGN based on these selection criteria. The absence of any pre-selection in the VVDS leads us to have a very complete sample of AGN, including also objects with unusual colors and continuum shape. The VVDS AGN sample shows in fact redder colors than those expected by comparing it, for example, with the color track derived from the SDSS composite spectrum. In particular, the faintest objects have on average redder colors than the brightest ones. This can be attributed to both a large fraction of dust-reddened objects and a significant contamination from the host galaxy. We have tested these possibilities by examining the global spectral energy distribution of each object using, in addition to the U, B, V, R and I-band magnitudes, also the UV-Galex and the IR-Spitzer bands, and fitting it with a combination of AGN and galaxy emission, allowing also for the possibility of extinction of the AGN flux. We found that for 44% of our objects the contamination from the host galaxy is not negligible and this fraction decreases to 21% if we restrict the analysis to a bright subsample (M1450 <-22.15). Our estimated integral surface density at IAB < 24.0 is 500 AGN per square degree, which represents the highest surface density of a spectroscopically confirmed sample of optically selected AGN. We derived the luminosity function in B-band for 1.0 < z < 3.6 using the 1/Vmax estimator. Our data, more than one magnitude fainter than previous optical surveys, allow us to constrain the faint part of the luminosity function up to high redshift. A comparison of our data with the 2dF sample at low redshift (1 < z < 2.1) shows that the VDDS data can not be well fitted with the pure luminosity evolution (PLE) models derived by previous optically selected samples. Qualitatively, this appears to be due to the fact that our data suggest the presence of an excess of faint objects at low redshift (1.0 < z < 1.5) with respect to these models. By combining our faint VVDS sample with the large sample of bright AGN extracted from the SDSS DR3 (Richards et al., 2006b) and testing a number of different evolutionary models, we find that the model which better represents the combined luminosity functions, over a wide range of redshift and luminosity, is a luminosity dependent density evolution (LDDE) model, similar to those derived from the major Xsurveys. Such a parameterization allows the redshift of the AGN density peak to change as a function of luminosity, thus fitting the excess of faint AGN that we find at 1.0 < z < 1.5. On the basis of this model we find, for the first time from the analysis of optically selected samples, that the peak of the AGN space density shifts significantly towards lower redshift going to lower luminosity objects. The position of this peak moves from z 2.0 for MB <-26.0 to z 0.65 for -22< MB <-20. This result, already found in a number of X-ray selected samples of AGN, is consistent with a scenario of “AGN cosmic downsizing”, in which the density of more luminous AGN, possibly associated to more massive black holes, peaks earlier in the history of the Universe (i.e. at higher redshift), than that of low luminosity ones, which reaches its maximum later (i.e. at lower redshift). This behavior has since long been claimed to be present in elliptical galaxies and it is not easy to reproduce it in the hierarchical cosmogonic scenario, where more massive Dark Matter Halos (DMH) form on average later by merging of less massive halos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental gap in the current understanding of collapsed structures in the universe concerns the thermodynamical evolution of the ordinary, baryonic component. Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas toward the centre of galaxies, groups and clusters. The last generation of multiwavelength observations has radically changed our view on baryons, suggesting that the heating linked to the active galactic nucleus (AGN) may be the balancing counterpart of cooling. In this Thesis, I investigate the engine of the heating regulated by the central black hole. I argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several billion years without destroying the cool-core structure. Using an upgraded version of the parallel 3D hydrodynamic code FLASH, I show that anisotropic AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, cocoon shocks, sonic ripples, metals dredge-up, and subsonic turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause cold gas condensation, a residual of the quenched cooling flow and, later, fuel for the AGN feedback engine. The self-regulated outflows are systematically tested on the scales of massive clusters, groups and isolated elliptical galaxies: in lighter less bound objects the feedback needs to be gentler and less efficient, in order to avoid drastic overheating. In this Thesis, I describe in depth the complex hydrodynamics, involving the coupling of the feedback energy to that of the surrounding hot medium. Finally, I present the merits and flaws of all the proposed models, with a critical eye toward observational concordance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, I have investigated the evolution of the high-redshift (z > 3) AGN population by collecting data from some of the major Chandra and XMM-Newton surveys. The final sample (141 sources) is one of the largest selected at z> 3 in the X- rays and it is characterised by a very high redshift completeness (98%). I derived the spectral slopes and obscurations through a spectral anaysis and I assessed the high-z evolution by deriving the luminosity function and the number counts of the sample. The best representation of the AGN evolution is a pure density evolution (PDE) model: the AGN space density is found to decrease by a factor of 10 from z=3 to z=5. I also found that about 50% of AGN are obscured by large column densities (logNH > 23). By comparing these data with those in the Local Universe, I found a positive evolution of the obscured AGN fraction with redshift, especially for luminous (logLx > 44) AGN. I also studied the gas content of z < 1 AGN-hosting galaxies and compared it with that of inactive galaxies. For the first time, I applied to AGN a method to derive the gas mass previously used for inactive galaxies only. AGN are found to live preferentially in gas-rich galaxies. This result on the one hand can help us in understanding the AGN triggering mechanisms, on the other hand explains why AGN are preferentially hosted by star-forming galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Thesis, we investigate the cosmological co-evolution of supermassive black holes (BHs), Active Galactic Nuclei (AGN) and their hosting dark matter (DM) halos and galaxies, within the standard CDM scenario. We analyze both analytic, semi-analytic and hybrid techniques and use the most recent observational data available to constrain the assumptions underlying our models. First, we focus on very simple analytic models where the assembly of BHs is directly related to the merger history of DM haloes. For this purpose, we implement the two original analytic models of Wyithe & Loeb 2002 and Wyithe & Loeb 2003, compare their predictions to the AGN luminosity function and clustering data, and discuss possible modifications to the models that improve the match to the observation. Then we study more sophisticated semi-analytic models in which however the baryonic physics is neglected as well. Finally we improve the hybrid simulation of De Lucia & Blaizot 2007, adding new semi-analytical prescriptions to describe the BH mass accretion rate during each merger event and its conversion into radiation, and compare the derived BH scaling relations, fundamental plane and mass function, and the AGN luminosity function with observations. All our results support the following scenario: • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the CDM model. • At redshifts z & 1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity. • At redshifts z . 1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase. • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio” activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time. • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this PhD thesis is the study of the nuclear properties of radio loud AGN. Multiple and/or recent mergers in the host galaxy and/or the presence of cool core in galaxy clusters can play a role in the formation and evolution of the radio source. Being a unique class of objects (Lin & Mohr 2004), we focus on Brightest Cluster Galaxies (BCGs). We investigate their parsec scale radio emission with VLBI (Very Long Baseline Interferometer) observations. From literature or new data , we collect and analyse VLBA (Very Long Baseline) observations at 5 GHz of a complete sample of BCGs and ``normal'' radio galaxies (Bologna Complete Sample , BCS). Results on nuclear properties of BCGs are coming from the comparison with the results for the Bologna COmplete Sample (BCS). Our analysis finds a possible dichotomy between BCGs in cool-core clusters and those in non-cool-core clusters. Only one-sided BCGs have similar kinematic properties with FRIs. Furthermore, the dominance of two-sided jet structures only in cooling clusters suggests sub-relativistic jet velocities. The different jet properties can be related to a different jet origin or to the interaction with a different ISM. We larger discuss on possible explanation of this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD Thesis is devoted to the accurate analysis of the physical properties of Active Galactic Nuclei (AGN) and the AGN/host-galaxy interplay. Due to the broad-band AGN emission (from radio to hard X-rays), a multi-wavelength approach is mandatory. Our research is carried out over the COSMOS field, within the context of the XMM-Newton wide-field survey. To date, the COSMOS field is a unique area for comprehensive multi-wavelength studies, allowing us to define a large and homogeneous sample of QSOs with a well-sampled spectral coverage and to keep selection effects under control. Moreover, the broad-band information contained in the COSMOS database is well-suited for a detailed analysis of AGN SEDs, bolometric luminosities and bolometric corrections. In order to investigate the nature of both obscured (Type-2) and unobscured (Type-1) AGN, the observational approach is complemented with a theoretical modelling of the AGN/galaxy co-evolution. The X-ray to optical properties of an X-ray selected Type-1 AGN sample are discussed in the first part. The relationship between X-ray and optical/UV luminosities, parametrized by the spectral index αox, provides a first indication about the nature of the central engine powering the AGN. Since a Type-1 AGN outshines the surrounding environment, it is extremely difficult to constrain the properties of its host-galaxy. Conversely, in Type-2 AGN the host-galaxy light is the dominant component of the optical/near-IR SEDs, severely affecting the recovery of the intrinsic AGN emission. Hence a multi-component SED-fitting code is developed to disentangle the emission of the stellar populationof the galaxy from that associated with mass accretion. Bolometric corrections, luminosities, stellar masses and star-formation rates, correlated with the morphology of Type-2 AGN hosts, are presented in the second part, while the final part concerns a physically-motivated model for the evolution of spheroidal galaxies with a central SMBH. The model is able to reproduce two important stages of galaxy evolution, namely the obscured cold-phase and the subsequent quiescent hot-phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that massive black holes have a profound effect on the evolution of galaxies, and possibly on their formation by regulating the amount of gas available for the star formation. However, how black hole and galaxies communicate is still an open problem, depending on how much of the energy released interacts with the circumnuclear matter. In the last years, most studies of feedback have primarily focused on AGN jet/cavity systems in the most massive galaxy clusters. This thesis intends to investigate the feedback phenomena in radio--loud AGNs from a different perspective studying isolated radio galaxies, through high-resolution spectroscopy. In particular one NLRG and three BLRG are studied, searching for warm gas, both in emission and absorption, in the soft X-ray band. I show that the soft spectrum of 3C33 originates from gas photoionized by the central engine. I found for the first time WA in 3C382 and 3C390.3. I show that the observed warm emitter/absorbers is not uniform and probably located in the NLR. The detected WA is slow implying a mass outflow rate and kinetic luminosity always well below 1% the L(acc) as well as the P(jet). Finally the radio--loud properties are compared with those of type 1 RQ AGNs. A positive correlation is found between the mass outflow rate/kinetic luminosity, and the radio loudness. This seems to suggest that the presence of a radio source (the jet?) affects the distribution of the absorbing gas. Alternatively, if the gas distribution is similar in Seyferts and radio galaxies, the M(out) vs rl relation could simply indicate a major ejection of matter in the form of wind in powerful radio AGNs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This Thesis focuses on the X-ray study of the inner regions of Active Galactic Nuclei, in particular on the formation of high velocity winds by the accretion disk itself. Constraining AGN winds physical parameters is of paramount importance both for understanding the physics of the accretion/ejection flow onto supermassive black holes, and for quantifying the amount of feedback between the SMBH and its environment across the cosmic time. The sources selected for the present study are BAL, mini-BAL, and NAL QSOs, known to host high-velocity winds associated to the AGN nuclear regions. Observationally, a three-fold strategy has been adopted: - substantial samples of distant sources have been analyzed through spectral, photometric, and statistical techniques, to gain insights into their mean properties as a population; - a moderately sized sample of bright sources has been studied through detailed X-ray spectral analysis, to give a first flavor of the general spectral properties of these sources, also from a temporally resolved point of view; - the best nearby candidate has been thoroughly studied using the most sophisticated spectral analysis techniques applied to a large dataset with a high S/N ratio, to understand the details of the physics of its accretion/ejection flow. There are three main channels through which this Thesis has been developed: - [Archival Studies]: the XMM-Newton public archival data has been extensively used to analyze both a large sample of distant BAL QSOs, and several individual bright sources, either BAL, mini-BAL, or NAL QSOs. - [New Observational Campaign]: I proposed and was awarded with new X-ray pointings of the mini-BAL QSOs PG 1126-041 and PG 1351+640 during the XMM-Newton AO-7 and AO-8. These produced the biggest X-ray observational campaign ever made on a mini-BAL QSO (PG 1126-041), including the longest exposure so far. Thanks to the exceptional dataset, a whealth of informations have been obtained on both the intrinsic continuum and on the complex reprocessing media that happen to be in the inner regions of this AGN. Furthermore, the temporally resolved X-ray spectral analysis field has been finally opened for mini-BAL QSOs. - [Theoretical Studies]: some issues about the connection between theories and observations of AGN accretion disk winds have been investigated, through theoretical arguments and synthetic absorption line profiles studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of supermassive black hole (SMBH) accretion during their phase of activity (hence becoming active galactic nuclei, AGN), and its relation to the host-galaxy growth, requires large datasets of AGN, including a significant fraction of obscured sources. X-ray data are strategic in AGN selection, because at X-ray energies the contamination from non-active galaxies is far less significant than in optical/infrared surveys, and the selection of obscured AGN, including also a fraction of heavily obscured AGN, is much more effective. In this thesis, I present the results of the Chandra COSMOS Legacy survey, a 4.6 Ms X-ray survey covering the equatorial COSMOS area. The COSMOS Legacy depth (flux limit f=2x10^(-16) erg/s/cm^(-2) in the 0.5-2 keV band) is significantly better than that of other X-ray surveys on similar area, and represents the path for surveys with future facilities, like Athena and X-ray Surveyor. The final Chandra COSMOS Legacy catalog contains 4016 point-like sources, 97% of which with redshift. 65% of the sources are optically obscured and potentially caught in the phase of main BH growth. We used the sample of 174 Chandra COSMOS Legacy at z>3 to place constraints on the BH formation scenario. We found a significant disagreement between our space density and the predictions of a physical model of AGN activation through major-merger. This suggests that in our luminosity range the BH triggering through secular accretion is likely preferred to a major-merger triggering scenario. Thanks to its large statistics, the Chandra COSMOS Legacy dataset, combined with the other multiwavelength COSMOS catalogs, will be used to answer questions related to a large number of astrophysical topics, with particular focus on the SMBH accretion in different luminosity and redshift regimes.