16 resultados para ABERRANT SALIENCE
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Growing evidence indicates that cell and nuclear deformability plays a crucial role in the determination of cancer cells tumorigenic and metastatic potential. The perinuclear actin cap, by wrapping the nucleus with a functional network of actomyosin cables, can modulate nuclear architecture and consequently cell/nuclear elasticity. The hepatocyte growth factor receptor (MET) stands out among other membrane receptors as crucial player of the actin filaments organization, but no data are available on a specific role for MET in the actin cap assembly and the overall nuclear architecture organization. In a cell system characterized by MET hyperactivation, we observed a strong rearrangement of the cellular actin caps, with a complete dismantling of apical stress fibers and a strikingly enhanced nuclear height. CRISPR/Cas9 silencing of MET completely reverted the aberrant phenotype, resulting in flattened cells with perfectly aligned perinuclear actomyosin bundles, as well as decreased MAPK and PI3K/AKT signaling, cell proliferation rate and aggressiveness. Interestingly, MET ablated cells acquired a remarkably directed and polarized migratory phenotype, contrarily to cells with MET sustained activation showing meandering random walk. A pathway enrichment analysis comparing MET-activated and MET-KO cells RNAseq data, unveiled the contribution of multiple pathways associated with cytoskeleton remodeling, regulation of cell shape and response to mechanical stimuli. In line, the co-transcriptional activator YAP1, playing a major role in cell mechanosensing and focal adhesions/actin stabilization, appeared the culprit of the genetic reassembling of KO cells. Indeed, MET silencing was shown to induce YAP1 nuclear shuttling and increased co-transcriptional activity. Finally, we were able to induce in a normal epithelial model a phenotype closer to MET activated cancer cells only by introducing a constitutive fusion protein of MET. Taken together, our results demonstrate a new mechanism of MET-mediated actin remodeling responsible for a tumor-initiating capacity and meandering random migration, which requires YAP1 inactivation.
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
The Ph chromosome is the most frequent cytogenetic aberration associated with adult ALL and it represents the single most significant adverse prognostic marker. Despite imatinib has led to significant improvements in the treatment of patients with Ph+ ALL, in the majority of cases resistance developed quickly and disease progressed. Some mechanisms of resistance have been widely described but the full knowledge of contributing factors, driving both the disease and resistance, remains to be defined. The observation of rapid development of lymphoblastic leukemia in mice expressing altered Ikaros (Ik) isoforms represented the background of this study. Ikaros is a zinc finger transcription factor required for normal hemopoietic differentiation and proliferation, particularly in the lymphoid lineages. By means of alternative splicing, Ikaros encodes several proteins that differ in their abilities to bind to a consensus DNA-binding site. Shorter, DNA nonbinding isoforms exert a dominant negative effect, inhibiting the ability of longer heterodimer partners to bind DNA. The differential expression pattern of Ik isoforms in Ph+ ALL patients was analyzed in order to determine if molecular abnormalities involving the Ik gene could associate with resistance to imatinib and dasatinib. Bone marrow and peripheral blood samples from 46 adult patients (median age 55 yrs, 18-76) with Ph+ ALL at diagnosis and during treatment with imatinib (16 pts) or dasatinib (30 pts) were collected. We set up a fast, high-throughput method based on capillary electrophoresis technology to detect and quantify splice variants. 41% Ph+ ALL patients expressed high levels of the non DNA-binding dominant negative Ik6 isoform lacking critical N-terminal zinc-fingers which display abnormal subcellular compartmentalization pattern. Nuclear extracts from patients expressed Ik6 failed to bind DNA in mobility shift assay using a DNA probe containing an Ikaros-specific DNA binding sequence. In 59% Ph+ ALL patients there was the coexistence in the same PCR sample and at the same time of many splice variants corresponded to Ik1, Ik2, Ik4, Ik4A, Ik5A, Ik6, Ik6 and Ik8 isoforms. In these patients aberrant full-length Ikaros isoforms in Ph+ ALL characterized by a 60-bp insertion immediately downstream of exon 3 and a recurring 30-bp in-frame deletion at the end of exon 7 involving most frequently the Ik2, Ik4 isoforms were also identified. Both the insertion and deletion were due to the selection of alternative splice donor and acceptor sites. The molecular monitoring of minimal residual disease showed for the first time in vivo that the Ik6 expression strongly correlated with the BCR-ABL transcript levels suggesting that this alteration could depend on the Bcr-Abl activity. Patient-derived leukaemia cells expressed dominant-negative Ik6 at diagnosis and at the time of relapse, but never during remission. In order to mechanistically demonstrated whether in vitro the overexpression of Ik6 impairs the response to tyrosine kinase inhibitors (TKIs) and contributes to resistance, an imatinib-sensitive Ik6-negative Ph+ ALL cell line (SUP-B15) was transfected with the complete Ik6 DNA coding sequence. The expression of Ik6 strongly increased proliferation and inhibited apoptosis in TKI sensitive cells establishing a previously unknown link between specific molecular defects that involve the Ikaros gene and the resistance to TKIs in Ph+ ALL patients. Amplification and genomic sequence analysis of the exon splice junction regions showed the presence of 2 single nucleotide polymorphisms (SNPs): rs10251980 [A/G] in the exon2/3 splice junction and of rs10262731 [A/G] in the exon 7/8 splice junction in 50% and 36% of patients, respectively. A variant of the rs11329346 [-/C], in 16% of patients was also found. Other two different single nucleotide substitutions not recognized as SNP were observed. Some mutations were predicted by computational analyses (RESCUE approach) to alter cis-splicing elements. In conclusion, these findings demonstrated that the post-transcriptional regulation of alternative splicing of Ikaros gene is defective in the majority of Ph+ ALL patients treated with TKIs. The overexpression of Ik6 blocking B-cell differentiation could contribute to resistance opening a time frame, during which leukaemia cells acquire secondary transforming events that confer definitive resistance to imatinib and dasatinib.
Resumo:
The current studies assessed the role of trait anger and anger expression styles on risk decision-making in adulthood, adolescence and childhood. In the first experiment 158 adults completed the STAXI-2 and an inventory consisting of a battery of hypothetical everyday decision-making scenarios. Participants were also asked to evaluate the perception of risk for each chosen option and some contextual characteristics, that are familiarity and salience for each scenario. The study provides evidence for a relationship between individual differences in the tendency to feel and express anger and risky decisions and for mediation effects of familiarity and salience appraisals. Moreover, results indicated that trait anger was predictive of risk perception and they provide evidence for a positive relationship between risk decision-making and risk perception. In the second study, we examined the relationship between specific components of anger (i.e., cognitive, affective and behavioural) and risk decision-making in adolescents. 101 subjects completed specific tasks, measuring risk decision-making, assessed using hypothetical choice scenarios, and anger, evaluated through the STAXI-CA and the MSAI-R. Results showed that adolescents higher on hostility, anger experience and destructive expression, make more risky decisions in everyday life situations. Moreover, regression analyses indicated that destructive expression of anger and hostility were predictive of adolescents’ risky decisions. In the third experiment, 104 children completed three tasks: the STAXI-CA, the MSAI-R and a task measuring risk decision-making in everyday situations. Subjects were also asked to evaluate the degree of danger, benefit, fun and fear perceived for each risky choice. Analyses indicated that: (a) risk decision-making was predicted by both trait anger and outward expression of anger; (b) destructive expression o anger was predictive of children’s risky decisions; (c) appraisal of danger fully mediated the relation between trait anger and risk; (d) perceptions of benefit, scare and fun partially mediated the relationship between trait anger and risk; and (e) appraisal of danger partially mediated the relationship between outward expression of anger and risk decision-making. The results provide evidence for a relationship between dispositional anger and risk decision-making during childhood, suggesting a possible explanation of the mechanisms below. In particular, risk decision-making can be viewed as the output of cognitive and emotive processes, linked to dispositional anger that leads children to be amused, optimistic and fearless in potentially risky situations. These findings substantiate the importance of incorporating cognitive and emotive factors in theories that seek to explain the relationship between personality traits and risk decision making across a broad range of age.
Resumo:
Molecular profiling of Peripheral T-cell lymphomas not otherwise specified Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of tumors that the WHO classification basically subdivides into specified and not otherwise specified (NOS). In Western countries, they represent around 12% of all non-Hodgkin's lymphomas. In particular, PTCL/NOS is the commonest subtype, corresponding to about 60-70% of all T-cell lymphomas. However, it remains a complex entity showing great variety regarding either morphology, immunophenotype or clinical behavior. Specially, the molecular pathology of these tumors is still poorly known. In fact, many alteration were found, but no single genes were demonstrated to have a pathogenetic role. Recently, gene expression profiling (GEP) allowed the identification of PTCL/NOS-associated molecular signatures, leading to better understanding of their histogenesis, pathogenesis and prognostication. Interestingly, proliferation pathways are commonly altered in PTCLs, being highly proliferative cases characterized by poorer prognosis. In this study, we aimed to investigate the possible role in PTCL/NOS pathogenesis of selected molecules, known to be relevant for proliferation control. In particular, we analyzed the cell cycle regulators PTEN and CDKN1B/p27, the NF-kB pathway, and the tyrosin kinase PDGFR. First, we found that PTEN and p27 seem to be regulated in PTCL/NOS as in normal T-lymphocytes, as to what expression and cellular localization are concerned, and do not present structural abnormalities in the vast majority of PTCL/NOS. Secondly, NF-kB pathway appeared to be variably activated in PTCL/NOS. In particular, according to NF-kB gene expression levels, the tumors could be divided into two clusters (C1 and C2). Specially, C1 corresponded to cases presenting with a global down-regulation of the entire pathway, while C2 showed over-expression of genes involved in TNF signaling. Notably, by immunohistochemistry, we showed that either the canonical or the alternative NK-kB pathway were activated in around 40% of cases. Finally, we found PGDFRA to be consistently over-expressed (at mRNA and protein level) and activated in almost all PTCLs/NOS. Noteworthy, when investigating possible causes for PDGFRA deregulation, we had evidences that PDGFR over-expression is due to the absence of miR-152, which appeared to be responsible for PDGFRA silencing in normal T-cells. Furthermore, we could demonstrate that its aberrant activation is sustained by an autocrine loop. Importantly, this is the first case, to the best of our knowledge, of hematological tumor in which tyrosin kinase aberrant activity is determined by deregulated miRNA expression and autocrine loop activation. Taken together, our results provide novel insight in PTCL/NOS pathogenesis by opening new intriguing scenarios for innovative therapeutic interventions.
Resumo:
This PhD Thesis is the result of my research activity in the last three years. My main research interest was centered on the evolution of mitochondrial genome (mtDNA), and on its usefulness as a phylogeographic and phylogenetic marker at different taxonomic levels in different taxa of Metazoa. From a methodological standpoint, my main effort was dedicated to the sequencing of complete mitochondrial genomes, and the approach to whole-genome sequencing was based on the application of Long-PCR and shotgun sequences. Moreover, this research project is a part of a bigger sequencing project of mtDNAs in many different Metazoans’ taxa, and I mostly dedicated myself to sequence and analyze mtDNAs in selected taxa of bivalves and hexapods (Insecta). Sequences of bivalve mtDNAs are particularly limited, and my study contributed to extend the sampling. Moreover, I used the bivalve Musculista senhousia as model taxon to investigate the molecular mechanisms and the evolutionary significance of their aberrant mode of mitochondrial inheritance (Doubly Uniparental Inheritance, see below). In Insects, I focused my attention on the Genus Bacillus (Insecta Phasmida). A detailed phylogenetic analysis was performed in order to assess phylogenetic relationships within the genus, and to investigate the placement of Phasmida in the phylogenetic tree of Insecta. The main goal of this part of my study was to add to the taxonomic coverage of sequenced mtDNAs in basal insects, which were only partially analyzed.
Resumo:
Disregolazioni dei recettori tirosinchinasici (RTK) sono di frequente riscontro nei tumori dell’uomo e in molti casi sono indicatori biologici che permettono di definire in maniera più accurata la prognosi dei pazienti. Possono rappresentare inoltre marker predittivi per la risposta a terapie antitumorali con farmaci a bersaglio molecolare. Numerosi inibitori tirosinchinasici (TKI) sono attualmente in corso di studio o già disponibili per l’utilizzo in oncologia umana, e molti di questi hanno dimostrato una significativa efficacia utilizzati singolarmente o in combinazione a terapie convenzionali. Studi recenti indicano che un quadro analogo di disregolazione dei recettori tirosinchinasici è presente anche nelle neoplasie dei piccoli animali, e ne suggeriscono in molti casi un’implicazione prognostica. Gli inibitori tirosinchinasi sono da poco entrati nell’arena dell’oncologia veterinaria, ma i primi risultati lasciano supporre che siano destinati ad essere integrati definitivamente nei protocolli terapeutici standard. La tesi consiste in una parte introduttiva in cui sono trattate le principali funzioni biologiche dei recettori tirosinchinasici, la loro struttura e il loro ruolo nell’oncogenesi e nella progressione tumorale in medicina umana e veterinaria. Si affrontano inoltre le principali metodiche di laboratorio per l’analisi molecolare in oncologia e i meccanismi d’azione dei farmaci inibitori tirosinchinasici, con un cenno ai prodotti maggiormente utilizzati e alle loro indicazioni. Segue la presentazione e la discussione dei risultati di quattro studi relativi alla valutazione delle disregolazioni del recettore tirosinchinasico Kit (espressione aberrante e mutazioni genomiche) nel mastocitoma cutaneo del gatto e del recettore del fattore di crescita epidermico (EGFR) nel carcinoma squamocellulare cutaneo del gatto e nei tumori polmonari primitivi del cane, con particolare attenzione al loro ruolo prognostico.
Resumo:
Because of its aberrant activation, the PI3K/AKT/mTOR signaling pathway represents a pharmacological target in blast cells from patients with acute myelogenous leukemia (AML). Using Reverse Phase Protein Microarrays (RPMA), we have analyzed 20 phosphorylated epitopes of the PI3K/Akt/mTor signal pathway of peripheral blood and bone marrow specimens of 84 patients with newly diagnosed AML. Fresh blast cells were grown for 2 h, 4 h or 20 h untreated or treated with a panel of phase I or phase II Akt allosteric inhibitors, either alone or in combination with the mTOR kinase inhibitor Torin1 or the broad RTK inhibitor Sunitinib. By unsupervised hierarchical clustering a strong phosphorylation/activity of most of the sampled members of the PI3K/Akt/mTOR pathway was observed in 70% of samples from AML patients. Remarkably, however, we observed that inhibition of Akt phosphorylation, as well as of its substrates, was transient, and recovered or even increased far above basal level after 20 h in 60% samples. We demonstrated that inhibition of Akt induces FOXO-dependent insulin receptor expression and IRS-1 activation, attenuating the effect of drug treatment by reactivation of PI3K/Akt. Consistent with this model we found that combined inhibition of Akt and RTKs is much more effective than either alone, revealing the adaptive capabilities of signaling networks in blast cells and highliting the limations of these drugs if used as monotherapy.
Resumo:
Cellular response to γ-rays is mediated by ATM-p53 axis. When p53 is phosphorylated, it can transactivate several genes to induce permanent cell cycle arrest (senescence) or apoptosis. Epithelial and mesenchymal cells are more resistant to radiation-induced apoptosis and respond mainly by activating senescence. Hence, tumor cells in a senescent state might remain as “dormant” malignant in fact through disruption of p53 function, cells may overcome growth arrest. Oncocytic features were acquired in the recurring neoplasia after radiation therapy in patient with colonrectal cancer. Oncocytic tumors are characterized by aberrant biogenesis and are mainly non-aggressive neoplasms. Their low proliferation degree can be explained by chronic destabilization of HIF1α, which presides to adaptation to hypoxia and also plays a pivotal role in hypoxia-related radio-resistance. The aim of the present thesis was to verify whether mitochondrial biogenesis can be induced following radiation treatment, in relation of HIF1α status and whether is predictive of a senescence response. In this study was demonstrate that mitochondrial biogenesis parameters like mitochondrial DNA copy number could be used for the prediction of hypoxic status of tissue after radiation treatment. γ-rays induce an increase of mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence. Mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a MDM2-mediated HIF1α degradation, leading to the release of PGC-1β inhibition by HIF1α. On the other hand, this protein blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally in vivo, post-radiotherapy mtDNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of senescence.
Resumo:
La PKCε e la PKCδ, chinasi ubiquitariamente distribuite e ad azione pleiotropica, sono implicate del differenziamento, sopravvivenza e proliferazione cellulare. Esse sono coinvolte nel processo differenziativo delle cellule staminali ematopoietiche e in fenomeni patologici associati al compartimento sanguigno. In questa tesi sono presentati i risultati riguardanti lo studio in vitro del ruolo di PKCε e PKCδ nel contesto del differenziamento megacariocitario, in particolare si caratterizza l’espressione e la funzione di queste chinasi nel modello umano e nel modello murino di Megacariocitopoiesi, normale e patologica. Confrontando le cinetiche dei due modelli presi in analisi nello studio è stato possibile osservare come in entrambi PKCε e PKCδ dimostrino avere una chiara e specifica modulazione nel progredire del processo differenziativo. Questi dati, se confrontati, permettono di affermare che PKCε e PKCδ presentano un pattern di espressione opposto e, nel modello umano rispetto a quello murino, reciproco: nell’uomo i livelli di PKCε devono essere down-modulati, mentre nel topo, al contrario, i livelli della chinasi risultano up-modulati durante lo stesso processo. Analogamente, le CD34+ in differenziazione presentano una costante e maggiore espressione di PKCδ durante la maturazione MK, mentre nel modello murino tale proteina risulta down-modulata nella fase più tardiva di formazione della piastrina. Le chinasi mostrano in oltre di agire, nei due modelli, attraverso pathways distinti e cioè RhoA nel topo e Bcl-xL nell’uomo. È stato inoltre verificato che l’aberrante differenziamento MK osservato nella mielofibrosi primaria (PMF), è associato a difetti di espressione di PKCε e di Bcl-xL e che una forzata down-modulazione di PKCε porta ad un ripristino di un normale livello di espressione di Bcl-xL così come della popolazione di megacariociti formanti propiastrine. I dati ottenuti indicano quindi che PKCε e PKCδ svolgono un ruolo importante nel corretto differenziamento MK e che PKCε potrebbe essere un potenziale nuovo target terapeutico nelle PMF.
Resumo:
Class I phosphatidylinositol 3-kinases (PI3Ks) are heterodimeric lipid kinases consisting of a regulatory subunit and one of four catalytic subunits (p110α, p110β, p110γ or p110δ). p110γ/p110δ PI3Ks are highly enriched in leukocytes. In general, PI3Ks regulate a variety of cellular processes including cell proliferation, survival and metabolism, by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Their activity is tightly regulated by the phosphatase and tensin homolog (PTEN) lipid phosphatase. PI3Ks are widely implicated in human cancers, and in particular are upregulated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to loss of PTEN function. These observations lend compelling weight to the application of PI3K inhibitors in the therapy of T-ALL. At present different compounds which target single or multiple PI3K isoforms have entered clinical trials. In the present research, it has been analyzed the therapeutic potential of the pan-PI3K inhibitor BKM120, an orally bioavailable 2,6-dimorpholino pyrimidine derivative, which has entered clinical trials for solid tumors, on both T-ALL cell lines and patient samples. BKM120 treatment resulted in cell cycle arrest and apoptosis, being cytotoxic to a panel of T-ALL cell lines and patient T-lymphoblasts. Remarkably, BKM120 synergized with chemotherapeutic agents currently used for treating T-ALL patients. BKM120 efficacy was confirmed in in vivo studies to a subcutaneous xenotransplant model of human T-ALL. Because it is still unclear which agents among isoform-specific or pan inhibitors can achieve the greater efficacy, further analyses have been conducted to investigate the effects of PI3K inhibition, in order to elucidate the mechanisms responsible for the proliferative impairment of T-ALL. Overall, these results indicated that BKM120 may be an efficient treatment for T-ALLs that have aberrant up-regulation of the PI3K signaling pathway and strongly support clinical application of pan-class I PI3K rather than single-isoform inhibitors in T-ALL treatment.
Resumo:
Aberrant expression of ETS transcription factors, including FLI1 and ERG, due to chromosomal translocations has been described as a driver event in initiation and progression of different tumors. In this study, the impact of prostate cancer (PCa) fusion gene TMPRSS2-ERG was evaluated on components of the insulin-like growth factor (IGF) system and the CD99 molecule, two well documented targets of EWS-FLI1, the hallmark of Ewing sarcoma (ES). The aim of this study was to identify common or distinctive ETS-related mechanisms which could be exploited at biological and clinical level. The results demonstrate that IGF-1R represents a common target of ETS rearrangements as ERG and FLI1 bind IGF-1R gene promoter and their modulation causes alteration in IGF-1R protein levels. At clinical level, this mechanism provides basis for a more rationale use of anti-IGF-1R inhibitors as PCa cells expressing the fusion gene better respond to anti-IGF-1R agents. EWS-FLI1/IGF-1R axis provides rationale for combination of anti-IGF-1R agents with trabectedin, an alkylator agent causing enhanced EWS-FLI1 occupancy on the IGF-1R promoter. TMPRSS2-ERG also influences prognosis relevance of IGF system as high IGF-1R correlates with a better biochemical progression free survival (BPFS) in PCa patients negative for the fusion gene while marginal or no association was found in the total cases or TMPRSS2-ERG-positive cases, respectively. This study indicates CD99 is differentially regulated between ETS-related tumors as CD99 is not a target of ERG. In PCa, CD99 did not show differential expression between TMPRSS2-ERG-positive and –negative cells. A direct correlation was anyway found between ERG and CD99 proteins both in vitro and in patients putatively suggesting that ERG target genes comprehend regulators of CD99. Despite a little trend suggesting a correlation between CD99 expression and a better BPFS, no clinical relevance for CD99 was found in the field of prognostic biomarkers.
Resumo:
It is well known that ageing and cancer have common origins due to internal and environmental stress and share some common hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury. Moreover, ageing is involved in a number of events responsible for carcinogenesis and cancer development at the molecular, cellular, and tissue levels. Ageing could represent a “blockbuster” market because the target patient group includes potentially every person; at the same time, oncology has become the largest therapeutic area in the pharmaceutical industry in terms of the number of projects, clinical trials and research and development (R&D) spending, but cancer remains one of the leading causes of mortality worldwide. The overall aim of the work presented in this thesis was the rational design of new compounds able to modulate activity of relevant targets involved in cancer and aging-related pathologies, namely proteasome and immunoproteasome, sirtuins and interleukin 6. These three targets play different roles in human cells, but the modulation of its activity using small molecules could have beneficial effects on one or more aging-related diseases and cancer. We identified new moderately active and selective non-peptidic compounds able to inhibit the activity of both standard and immunoproteasome, as well as novel and selective scaffolds that would bind and inhibit SIRT6 selectively and can be used to sensitize tumor cells to commonly used anticancer agents such gemcitabine and olaparib. Moreover, our virtual screening approach led us also to the discovery of new putative modulators of SIRT3 with interesting in-vitro and cellular activity. Although the selectivity and potency of the identified chemical scaffolds are susceptible to be further improved, these compounds can be considered as highly promising leads for the development of future therapeutics.
Resumo:
Il carcinoma squamoso orale (CSO) è spesso preceduto da lesioni definite potenzialmente maligne tra cui la leucoplachia e il lichen ma una diagnosi precoce avviene ancora oggi in meno della metà dei casi. Inoltre spesso un paziente trattato per CSO svilupperà secondi tumori. Scopo del lavoro di ricerca è stato: 1) Studiare, mediante metodica di next generation sequencing, lo stato di metilazione di un gruppo di geni a partire da prelievi brushing del cavo orale al fine di identificare CSO o lesioni ad alto rischio di trasformazione maligna. 2) Valurare la relazione esistente tra sovraespressione di p16INK4A e presenza di HPV in 35 pazienti affetti da lichen 3) Valutare la presenza di marker istopatologici predittivi di comparsa di seconde manifestazioni tumorali 4) valutare la relazione clonale tra tumore primitivo e metastasi linfonodale in 8 pazienti mediante 2 metodiche di clonalità differenti: l’analisi di mtDNA e delle mutazioni del gene TP53. I risultati hanno mostrato: 1) i geni ZAP70 e GP1BB hanno presentato un alterato stato di metilazione rispettivamente nel 100% e nel 90,9% di CSO e lesioni ad alto rischio, mentre non sono risultati metilati nei controlli sani; ipotizzando un ruolo come potenziali marcatori per la diagnosi precoce nel CSO. 2)Una sovraespressione di p16INK4A è risultata in 26/35 pazienti affetti da lichen ma HPV-DNA è stato identificato in soli 4 campioni. Nessuna relazione sembra essere tra sovraespressione di p16INK4A e virus HPV. 3)L’invasione perineurale è risultato un marker predittivo della comparsa di recidiva locale e metastasi linfonodale, mentre lo stato dei margini chirurgici si è rilevato un fattore predittivo per la comparsa di secondi tumori primitivi 4) Un totale accordo nei risultati c’è stato tra analisi di mtDNA e analisi di TP53 e le due metodiche hanno identificato la presenza di 4 metastasi linfonodali non clonalmente correlate al tumore primitivo.