2 resultados para 8-Hydroxyguanin, DNA Reparatur, Oxidativer Stress, Antioxidantien

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3 end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the Topo-Seq approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5 and 3 ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3 ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5 ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Oxidative DNA damages determine the activation of cell repair processes. These processes originate repair products, including the most studied one, 8-hydroxy-2-deoxyguanosine (8-OH-dG). Several analytical techniques have been applied to measure urinary 8-OH-dG, but a discrepancy in basal urinary 8-OH-dG levels has been noted when comparing chromatographic techniques with immunoenzymatic assays (ELISA). Our laboratory has developed a fully validated, liquid chromatography-tandem mass spectrometry method presenting high sensitivity and specificity, which has participated in an inter-laboratory validation of assays for the measurement of urinary 8-OH-dG (ESCULA project). Mass Spectrometric techniques showed more accuracy and specificity than immunoenzymatic methods. Human spot urine samples were analyzed in order to investigate the possibility to correct urinary lesion measurements for creatinine and to evaluate the intra- and inter-day variability of 8-OH-dG excretion in urine. Our results confirm the opportunity to delve into these issues. Finally, we measured urinary 8-OH-dG in workers exposed to antineoplastic drugs and in a group of unexposed subjects to evaluate the relationship between occupational exposure and oxidative damage related to the internal dose. We found higher levels of 8-OH-dG in exposed nurses, but, as compared to the non-exposed subjects, the difference was not statistically significant, probably do to the very low level of exposure. The scientific literature is rapidly developing on the topic of DNA damage and related repair capacity. Nevertheless, further studies are needed to achieve a better understanding of the sources of DNA lesions in urine and their significance, both in clinical and occupational medicine.