3 resultados para 62H20 (Primary) 62H11, 62G05 (Secondary)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi affronta il tema dell'innovazione della scuola, oggetto di costante attenzione da parte delle organizzazioni internazionali e dei sistemi educativi nazionali, per le sue implicazioni economiche, sociali e politiche, e intende portare un contributo allo studio sistematico e analitico dei progetti e delle esperienze di innovazione complessiva dell'ambiente di apprendimento. Il concetto di ambiente di apprendimento viene approfondito nelle diverse prospettive di riferimento, con specifica attenzione al framework del progetto "Innovative Learning Environments" [ILE], dell’Organisation For Economic And Cultural Development [OECD] che, con una prospettiva dichiaratamente olistica, individua nel dispositivo dell’ambiente di apprendimento la chiave per l’innovazione dell’istruzione nella direzione delle competenze per il ventunesimo Secolo. I criteri presenti nel quadro di riferimento del progetto sono stati utilizzati per un’analisi dell’esperienza proposta come caso di studio, Scuola-Città Pestalozzi a Firenze, presa in esame perché nell’anno scolastico 2011/2012 ha messo in pratica appunto un “disegno” di trasformazione dell’ambiente di apprendimento e in particolare dei caratteri del tempo/scuola. La ricerca, condotta con una metodologia qualitativa, è stata orientata a far emergere le interpretazioni dei protagonisti dell’innovazione indagata: dall’analisi del progetto e di tutta la documentazione fornita dalla scuola è scaturita la traccia per un focus-group esplorativo attraverso il quale sono stati selezionati i temi per le interviste semistrutturate rivolte ai docenti (scuola primaria e scuola secondaria di primo grado). Per quanto concerne l’interpretazione dei risultati, le trascrizioni delle interviste sono state analizzate con un approccio fenomenografico, attraverso l’individuazione di unità testuali logicamente connesse a categorie concettuali pertinenti. L’analisi dei materiali empirici ha permesso di enucleare categorie interpretative rispetto alla natura e agli scopi delle esperienze di insegnamento/apprendimento, al processo organizzativo, alla sostenibilità. Tra le implicazioni della ricerca si ritengono particolarmente rilevanti quelle relative alla funzione docente.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenol and cresols represent a good example of primary chemical building blocks of which 2.8 million tons are currently produced in Europe each year. Currently, these primary phenolic building blocks are produced by refining processes from fossil hydrocarbons: 5% of the world-wide production comes from coal (which contains 0.2% of phenols) through the distillation of the tar residue after the production of coke, while 95% of current world production of phenol is produced by the distillation and cracking of crude oil. In nature phenolic compounds are present in terrestrial higher plants and ferns in several different chemical structures while they are essentially absent in lower organisms and in animals. Biomass (which contain 3-8% of phenols) represents a substantial source of secondary chemical building blocks presently underexploited. These phenolic derivatives are currently used in tens thousand of tons to produce high cost products such as food additives and flavours (i.e. vanillin), fine chemicals (i.e. non-steroidal anti-inflammatory drugs such as ibuprofen or flurbiprofen) and polymers (i.e. poly p-vinylphenol, a photosensitive polymer for electronic and optoelectronic applications). European agrifood waste represents a low cost abundant raw material (250 millions tons per year) which does not subtract land use and processing resources from necessary sustainable food production. The class of phenolic compounds is essentially constituted by simple phenols, phenolic acids, hydroxycinnamic acid derivatives, flavonoids and lignans. As in the case of coke production, the removal of the phenolic contents from biomass upgrades also the residual biomass. Focusing on the phenolic component of agrifood wastes, huge processing and marketing opportunities open since phenols are used as chemical intermediates for a large number of applications, ranging from pharmaceuticals, agricultural chemicals, food ingredients etc. Following this approach we developed a biorefining process to recover the phenolic fraction of wheat bran based on enzymatic commercial biocatalysts in completely water based process, and polymeric resins with the aim of substituting secondary chemical building blocks with the same compounds naturally present in biomass. We characterized several industrial enzymatic product for their ability to hydrolize the different molecular features that are present in wheat bran cell walls structures, focusing on the hydrolysis of polysaccharidic chains and phenolics cross links. This industrial biocatalysts were tested on wheat bran and the optimized process allowed to liquefy up to the 60 % of the treated matter. The enzymatic treatment was also able to solubilise up to the 30 % of the alkali extractable ferulic acid. An extraction process of the phenolic fraction of the hydrolyzed wheat bran based on an adsorbtion/desorption process on styrene-polyvinyl benzene weak cation-exchange resin Amberlite IRA 95 was developed. The efficiency of the resin was tested on different model system containing ferulic acid and the adsorption and desorption working parameters optimized for the crude enzymatic hydrolyzed wheat bran. The extraction process developed had an overall yield of the 82% and allowed to obtain concentrated extracts containing up to 3000 ppm of ferulic acid. The crude enzymatic hydrolyzed wheat bran and the concentrated extract were finally used as substrate in a bioconversion process of ferulic acid into vanillin through resting cells fermentation. The bioconversion process had a yields in vanillin of 60-70% within 5-6 hours of fermentation. Our findings are the first step on the way to demonstrating the economical feasibility for the recovery of biophenols from agrifood wastes through a whole crop approach in a sustainable biorefining process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this research is to improve the comprehension of the processes controlling the formation of caves and karst-like morphologies in quartz-rich lithologies (more than 90% quartz), like quartz-sandstones and metamorphic quartzites. In the scientific community the processes actually most retained to be responsible of these formations are explained in the “Arenisation Theory”. This implies a slow but pervasive dissolution of the quartz grain/mineral boundaries increasing the general porosity until the rock becomes incohesive and can be easily eroded by running waters. The loose sands produced by the weathering processes are then evacuated to the surface through processes of piping due to the infiltration of waters from the fracture network or the bedding planes. To deal with these problems we adopted a multidisciplinary approach through the exploration and the study of several cave systems in different tepuis. The first step was to build a theoretical model of the arenisation process, considering the most recent knowledge about the dissolution kinetics of quartz, the intergranular/grain boundaries diffusion processes, the primary diffusion porosity, in the simplified conditions of an open fracture crossed by a continuous flow of undersatured water. The results of the model were then compared with the world’s widest dataset (more than 150 analyses) of water geochemistry collected till now on the tepui, in superficial and cave settings. All these studies allowed verifying the importance and the effectiveness of the arenisation process that is confirmed to be the main process responsible of the primary formation of these caves and of the karst-like superficial morphologies. The numerical modelling and the field observations allowed evaluating a possible age of the cave systems around 20-30 million of years.