4 resultados para 454 SEQUENCING

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clonal distribution of BRAFV600E in papillary thyroid carcinoma (PTC) has been recently debated. No information is currently available about precursor lesions of PTCs. My first aim was to establish whether the BRAFV600E mutation occurs as a subclonal event in PTCs. My second aim was to screen BRAF mutations in histologically benign tissue of cases with BRAFV600E or BRAFwt PTCs in order to identify putative precursor lesions of PTCs. Highly sensitive semi-quantitative methods were used: Allele Specific LNA quantitative PCR (ASLNAqPCR) and 454 Next-Generation Sequencing (NGS). For the first aim 155 consecutive formalin-fixed and paraffin-embedded (FFPE) specimens of PTCs were analyzed. The percentage of mutated cells obtained was normalized to the estimated number of neoplastic cells. Three groups of tumors were identified: a first had a percentage of BRAF mutated neoplastic cells > 80%; a second group showed a number of BRAF mutated neoplastic cells < 30%; a third group had a distribution of BRAFV600E between 30-80%. The large presence of BRAFV600E mutated neoplastic cell sub-populations suggests that BRAFV600E may be acquired early during tumorigenesis: therefore, BRAFV600E can be heterogeneously distributed in PTC. For the second aim, two groups were studied: one consisted of 20 cases with BRAFV600E mutated PTC, the other of 9 BRAFwt PTCs. Seventy-five and 23 histologically benign FFPE thyroid specimens were analyzed from the BRAFV600E mutated and BRAFwt PTC groups, respectively. The screening of BRAF mutations identified BRAFV600E in “atypical” cell foci from both groups of patients. “Unusual” BRAF substitutions were observed in histologically benign thyroid associated with BRAFV600E PTCs. These mutations were very uncommon in the group with BRAFwt PTCs and in BRAFV600E PTCs. Therefore, lesions carrying BRAF mutations may represent “abortive” attempts at cancer development: only BRAFV600E boosts neoplastic transformation to PTC. BRAFV600E mutated “atypical foci” may represent precursor lesions of BRAFV600E mutated PTCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric acute myeloid leukemia (AML) is a molecularly heterogeneous disease that arises from genetic alterations in pathways that regulate self-renewal and myeloid differentiation. While the majority of patients carry recurrent chromosomal translocations, almost 20% of childhood AML do not show any recognizable cytogenetic alteration and are defined as cytogenetically normal (CN)-AML. CN-AML patients have always showed a great variability in response to therapy and overall outcome, underlining the presence of unknown genetic changes, not detectable by conventional analyses, but relevant for pathogenesis, and outcome of AML. The development of novel genome-wide techniques such as next-generation sequencing, have tremendously improved our ability to interrogate the cancer genome. Based on this background, the aim of this research study was to investigate the mutational landscape of pediatric CN-AML patients negative for all the currently known somatic mutations reported in AML through whole-transcriptome sequencing (RNA-seq). RNA-seq performed on diagnostic leukemic blasts from 19 pediatric CN-AML cases revealed a considerable incidence of cryptic chromosomal rearrangements, with the identification of 21 putative fusion genes. Several of the fusion genes that were identified in this study are recurrent and might have a prognostic and/or therapeutic relevance. A paradigm of that is the CBFA2T3-GLIS2 fusion, which has been demonstrated to be a common alteration in pediatric CN-AML, predicting poor outcome. Important findings have been also obtained in the identification of novel therapeutic targets. On one side, the identification of NUP98-JARID1A fusion suggests the use of disulfiram; on the other, here we describe alteration-activating tyrosine kinases, providing functional data supporting the use of tyrosine kinase inhibitors to specifically inhibit leukemia cells. This study provides new insights in the knowledge of genetic alterations underlying pediatric AML, defines novel prognostic markers and putative therapeutic targets, and prospectively ensures a correct risk stratification and risk-adapted therapy also for the “all-neg” AML subgroup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I sottotipi H1N1, H1N2 e H3N2 di influenza A virus sono largamente diffusi nella popolazione suina di tutto il mondo. Nel presente lavoro è stato sviluppato un protocollo di sequenziamento di c.d. nuova generazione, su piattaforma Ion Torrent PGM, idoneo per l’analisi di tutti i virus influenzali suini (SIV). Per valutare l’evoluzione molecolare dei SIV italiani, sono stati sequenziati ed analizzati mediante analisi genomica e filogenetica un totale di sessantadue ceppi di SIV appartenenti ai sottotipi H1N1, H1N2 e H3N2, isolati in Italia dal 1998 al 2014. Sono stati evidenziati in sei campioni due fenomeni di riassortimento: tutti i SIV H1N2 esaminati presentavano una neuraminidasi di derivazione umana, diversa da quella dei SIV H1N2 circolanti in Europa, inoltre l’emoagglutinina (HA) di due isolati H1N2 era originata dal riassortimento con un SIV H1N1 avian-like. L’analisi molecolare dell’HA ha permesso di rivelare un’inserzione di due amminoacidi in quattro SIV H1N1 pandemici e una delezione di due aminoacidi in quattro SIV H1N2, entrambe a livello del sito di legame con il recettore cellulare. E’ stata inoltre evidenziata un’elevata omologia di un SIV H1N1 con ceppi europei isolati negli anni ’80, suggerendo la possibile origine vaccinale di questo virus. E’ stato possibile, in aggiunta, applicare il nuovo protocollo sviluppato per sequenziare un virus influenzale aviare altamente patogeno trasmesso all’uomo, direttamente da campione biologico. La diversità genetica nei SIV esaminati in questo studio conferma l’importanza di un continuo monitoraggio della costellazione genomica dei virus influenzali nella popolazione suina.