4 resultados para 3D quantitative findings
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In a previous study on maize (Zea mays, L.) several quantitative trait loci (QTL) showing high dominance-additive ratio for agronomic traits were identified in a population of recombinant inbred lines derived from B73 × H99. For four of these mapped QTL, namely 3.05, 4.10, 7.03 and 10.03 according to their chromosome and bin position, families of near-isogenic lines (NILs) were developed, i.e., couples of homozygous lines nearly identical except for the QTL region that is homozygote either for the allele provided by B73 or by H99. For two of these QTL (3.05 and 4.10) the NILs families were produced in two different genetic backgrounds. The present research was conducted in order to: (i) characterize these QTL by estimating additive and dominance effects; (ii) investigate if these effects can be affected by genetic background, inbreeding level and environmental growing conditions (low vs. high plant density). The six NILs’ families were tested across three years and in three Experiments at different inbreeding levels as NILs per se and their reciprocal crosses (Experiment 1), NILs crossed to related inbreds B73 and H99 (Experiment 2) and NILs crossed to four unrelated inbreds (Experiment 3). Experiment 2 was conducted at two plant densities (4.5 and 9.0 plants m-2). Results of Experiments 1 and 2 confirmed previous findings as to QTL effects, with dominance-additive ratio superior to 1 for several traits, especially for grain yield per plant and its component traits; as a tendency, dominance effects were more pronounced in Experiment 1. The QTL effects were also confirmed in Experiment 3. The interactions involving QTL effects, families and plant density were generally negligible, suggesting a certain stability of the QTL. Results emphasize the importance of dominance effects for these QTL, suggesting that they might deserve further studies, using NILs’ families and their crosses as base materials.
Resumo:
During my PhD,I have been develop an innovative technique to reproduce in vitro the 3D thymic microenvironment, to be used for growth and differentiation of thymocytes, and possible transplantation replacement in conditions of depressed thymic immune regulation. The work has been developed in the laboratory of Tissue Engineering at the University Hospital in Basel, Switzerland, under the tutorship of Prof.Ivan Martin. Since a number of studies have suggested that the 3D structure of the thymic microenvironment might play a key role in regulating the survival and functional competence of thymocytes, I’ve focused my effort on the isolation and purification of the extracellular matrix of the mouse thymus. Specifically, based on the assumption that TEC can favour the differentiation of pre-T lymphocytes, I’ve developed a specific decellularization protocol to obtain the intact, DNA-free extracellular matrix of the adult mouse thymus. Two different protocols satisfied the main characteristics of a decellularized matrix, according to qualitative and quantitative assays. In particular, the quantity of DNA was less than 10% in absolute value, no positive staining for cells was found and the 3D structure and composition of the ECM were maintained. In addition, I was able to prove that the decellularized matrixes were not cytotoxic for the cells themselves, and were able to increase expression of MHC II antigens compared to control cells grown in standard conditions. I was able to prove that TECs grow and proliferate up to ten days on top the decellularized matrix. After a complete characterization of the culture system, these innovative natural scaffolds could be used to improve the standard culture conditions of TEC, to study in vitro the action of different factors on their differentiation genes, and to test the ability of TECs to induce in vitro maturation of seeded T lymphocytes.
Resumo:
This dissertation contributes to the scholarly debate on temporary teams by exploring team interactions and boundaries.The fundamental challenge in temporary teams originates from temporary participation in the teams. First, as participants join the team for a short period of time, there is not enough time to build trust, share understanding, and have effective interactions. Consequently, team outputs and practices built on team interactions become vulnerable. Secondly, as team participants move on and off the teams, teams’ boundaries become blurred over time. It leads to uncertainty among team participants and leaders about who is/is not identified as a team member causing collective disagreement within the team. Focusing on the above mentioned challenges, we conducted this research in healthcare organisations since the use of temporary teams in healthcare and hospital setting is prevalent. In particular, we focused on orthopaedic teams that provide personalised treatments for patients using 3D printing technology. Qualitative and quantitative data were collected using interviews, observations, questionnaires and archival data at Rizzoli Orthopaedic Institute, Bologna, Italy. This study provides the following research outputs. The first is a conceptual study that explores temporary teams’ literature using bibliometric analysis and systematic literature review to highlight research gaps. The second paper qualitatively studies temporary relationships within the teams by collecting data using group interviews and observations. The results highlighted the role of short-term dyadic relationships as a ground to share and transfer knowledge at the team level. Moreover, hierarchical structure of the teams facilitates knowledge sharing by supporting dyadic relationships within and beyond the team meetings. The third paper investigates impact of blurred boundaries on temporary teams’ performance. Using quantitative data collected through questionnaires and archival data, we concluded that boundary blurring in terms of fluidity, overlap and dispersion differently impacts team performance at high and low levels of task complexity.
Resumo:
ABSTRACT Background Cardiac magnetic resonance (CMR) has been shown as promising diagnostic tool in Anderson-Fabry disease (AFD) cardiomyopathy due to its ability to detect fat deposits through lower native T1 values. However no histological validation has been provided to date. Objectives To correlate CMR and histologic findings in different cardiac stages of AFD focusing on T1 mapping. Methods Fifteen AFD patients (49 years [IQR 39-63], 60% females) undergoing CMR (cines, native T1 and T2 mapping, LGE and post-contrast T1 imaging) and endomyocardial biopsy (EMB, n=11) or septal myectomy (n=4), were retrospectively evaluated. Tissue specimens were analyzed with light/electron microscopy and vacuolization amount calculated as percentages of vacuolated myocytes and vacuolated myocyte area (%VMA) through a quantitative histomorphometric color-based analysis. Results In patients without increased indexed left ventricular mass (LVMi) at CMR (67%), T1 fell as %VMA increased (r= -0.883; p<0.001), whereas no clear relationship was evident once increased LVMi occurred (r= -0.501; p=0.389). At least 45% of vacuolized myocytes and 10% of VMA were needed for low T1 to occur. %VMA positively correlate with maximal wall thickness (MWT, r=0.860, p<0.0001) and LVMi (r= 0.762; p<0.001). Increased MWT and LVMi were present with at least 45% and 80% of vacuolated myocytes, respectively, and 18% and 22% of VMA. Conclusions This study demonstrated an inverse correlation between native T1 and the vacuolization amount in patients without increased LVMi at CMR, providing a histological validation of low native T1 in AFD. Importantly, a significant vacuolization burden was needed before low T1 and left ventricle hypertrophy occurred.