3 resultados para 321016 Opthalmology and Vision Science

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present work is to contribute to a better understanding of the relation between organization theory and management practice. It is organized as a collection of two papers, a theoretical and conceptual contribution and an ethnographic study. The first paper is concerned with systematizing different literatures inside and outside the field of organization studies that deal with the theory-practice relation. After identifying a series of positions to the theory-practice debate and unfolding some of their implicit assumptions and limitations, a new position called entwinement is developed in order to overcome status quo through reconciliation and integration. Accordingly, the paper proposes to reconceptualize theory and practice as a circular iterative process of action and cognition, science and common-sense enacted in the real world both by organization scholars and practitioners according to purposes at hand. The second paper is the ethnographic study of an encounter between two groups of expert academics and practitioners occasioned by a one-year executive business master in an international business school. The research articulates a process view of the knowledge exchange between management academics and practitioners in particular and between individuals belonging to different communities of practice, in general, and emphasizes its dynamic, relational and transformative mechanisms. Findings show that when they are given the chance to interact, academics and practitioners set up local provisional relations that enable them to act as change intermediaries vis-a-vis each other’s worlds, without tying themselves irremediably to each other and to the scenarios they conjointly projected during the master’s experience. Finally, the study shows that provisional relations were accompanied by a recursive shift in knowledge modes. While interacting, academics passed from theory to practical theorizing, practitioners passed from an involved practical mode to a reflexive and quasi-theoretical one, and then, as exchanges proceeded, the other way around.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.