2 resultados para 2D ELECTRON-GAS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
III-nitrides are wide-band gap materials that have applications in both electronics and optoelectronic devices. Because to their inherent strong polarization properties, thermal stability and higher breakdown voltage in Al(Ga,In)N/GaN heterostructures, they have emerged as strong candidates for high power high frequency transistors. Nonetheless, the use of (Al,In)GaN/GaN in solid state lighting has already proved its success by the commercialization of light-emitting diodes and lasers in blue to UV-range. However, devices based on these heterostructures suffer problems associated to structural defects. This thesis primarily focuses on the nanoscale electrical characterization and the identification of these defects, their physical origin and their effect on the electrical and optical properties of the material. Since, these defects are nano-sized, the thesis deals with the understanding of the results obtained by nano and micro-characterization techniques such as atomic force microscopy(AFM), current-AFM, scanning kelvin probe microscopy (SKPM), electron beam induced current (EBIC) and scanning tunneling microscopy (STM). This allowed us to probe individual defects (dislocations and cracks) and unveil their electrical properties. Taking further advantage of these techniques,conduction mechanism in two-dimensional electron gas heterostructures was well understood and modeled. Secondarily, origin of photoluminescence was deeply investigated. Radiative transition related to confined electrons and photoexcited holes in 2DEG heterostructures was identified and many body effects in nitrides under strong optical excitations were comprehended.
Resumo:
The research reported in this manuscript concerns the structural characterization of graphene membranes and single-walled carbon nanotubes (SWCNTs). The experimental investigation was performed using a wide range of transmission electron microscopy (TEM) techniques, from conventional imaging and diffraction, to advanced interferometric methods, like electron holography and Geometric Phase Analysis (GPA), using a low-voltage optical set-up, to reduce radiation damage in the samples. Electron holography was used to successfully measure the mean electrostatic potential of an isolated SWCNT and that of a mono-atomically thin graphene crystal. The high accuracy achieved in the phase determination, made it possible to measure, for the first time, the valence-charge redistribution induced by the lattice curvature in an individual SWCNT. A novel methodology for the 3D reconstruction of the waviness of a 2D crystal membrane has been developed. Unlike other available TEM reconstruction techniques, like tomography, this new one requires processing of just a single HREM micrograph. The modulations of the inter-planar distances in the HREM image are measured using Geometric Phase Analysis, and used to recover the waviness of the crystal. The method was applied to the case of a folded FGC, and a height variation of 0.8 nm of the surface was successfully determined with nanometric lateral resolution. The adhesion of SWCNTs to the surface of graphene was studied, mixing shortened SWCNTs of different chiralities and FGC membranes. The spontaneous atomic match of the two lattices was directly imaged using HREM, and we found that graphene membranes act as tangential nano-sieves, preferentially grafting achiral tubes to their surface.