5 resultados para 209900 OTHER LANGUAGE COMMUNICATION AND CULTURE

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific language impairment (SLI) is a complex neurodevelopmental disorder defined as an unexpected failure to develop normal language abilities for no obvious reason. Copy number variants (CNVs) are an important source of variation in the susceptibility to neuropsychiatric disorders. Therefore, a CNV study within SLI families was performed to investigate the role of structural variants in SLI. Among the identified CNVs, we focused on CNVs on chromosome 15q11-q13, recurrently observed in neuropsychiatric conditions, and a homozygous exonic microdeletion in ZNF277. Since this microdeletion falls within the AUTS1 locus, a region linked to autism spectrum disorders (ASD), we investigated a potential role of ZNF277 in SLI and ASD. Frequency data and expression analysis of the ZNF277 microdeletion suggested that this variant may contribute to the risk of language impairments in a complex manner, that is independent of the autism risk previously described in this region. Moreover, we identified an affected individual with a dihydropyrimidine dehydrogenase (DPD) deficiency, caused by compound heterozygosity of two deleterious variants in the gene DPYD. Since DPYD represents a good candidate gene for both SLI and ASD, we investigated its involvement in the susceptibility to these two disorders, focusing on the splicing variant rs3918290, the most common mutation in the DPD deficiency. We observed a higher frequency of rs3918290 in SLI cases (1.2%), compared to controls (~0.6%), while no difference was observed in a large ASD cohort. DPYD mutation screening in 4 SLI and 7 ASD families carrying the splicing variant identified six known missense changes and a novel variant in the promoter region. These data suggest that the combined effect of the mutations identified in affected individuals may lead to an altered DPD activity and that rare variants in DPYD might contribute to a minority of cases, in conjunction with other genetic or non-genetic factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis focuses on the energy efficiency in wireless networks under the transmission and information diffusion points of view. In particular, on one hand, the communication efficiency is investigated, attempting to reduce the consumption during transmissions, while on the other hand the energy efficiency of the procedures required to distribute the information among wireless nodes in complex networks is taken into account. For what concerns energy efficient communications, an innovative transmission scheme reusing source of opportunity signals is introduced. This kind of signals has never been previously studied in literature for communication purposes. The scope is to provide a way for transmitting information with energy consumption close to zero. On the theoretical side, starting from a general communication channel model subject to a limited input amplitude, the theme of low power transmission signals is tackled under the perspective of stating sufficient conditions for the capacity achieving input distribution to be discrete. Finally, the focus is shifted towards the design of energy efficient algorithms for the diffusion of information. In particular, the endeavours are aimed at solving an estimation problem distributed over a wireless sensor network. The proposed solutions are deeply analyzed both to ensure their energy efficiency and to guarantee their robustness against losses during the diffusion of information (against information diffusion truncation more in general).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent progress in microelectronic and wireless communications have enabled the development of low cost, low power, multifunctional sensors, which has allowed the birth of new type of networks named wireless sensor networks (WSNs). The main features of such networks are: the nodes can be positioned randomly over a given field with a high density; each node operates both like sensor (for collection of environmental data) as well as transceiver (for transmission of information to the data retrieval); the nodes have limited energy resources. The use of wireless communications and the small size of nodes, make this type of networks suitable for a large number of applications. For example, sensor nodes can be used to monitor a high risk region, as near a volcano; in a hospital they could be used to monitor physical conditions of patients. For each of these possible application scenarios, it is necessary to guarantee a trade-off between energy consumptions and communication reliability. The thesis investigates the use of WSNs in two possible scenarios and for each of them suggests a solution that permits to solve relating problems considering the trade-off introduced. The first scenario considers a network with a high number of nodes deployed in a given geographical area without detailed planning that have to transmit data toward a coordinator node, named sink, that we assume to be located onboard an unmanned aerial vehicle (UAV). This is a practical example of reachback communication, characterized by the high density of nodes that have to transmit data reliably and efficiently towards a far receiver. It is considered that each node transmits a common shared message directly to the receiver onboard the UAV whenever it receives a broadcast message (triggered for example by the vehicle). We assume that the communication channels between the local nodes and the receiver are subject to fading and noise. The receiver onboard the UAV must be able to fuse the weak and noisy signals in a coherent way to receive the data reliably. It is proposed a cooperative diversity concept as an effective solution to the reachback problem. In particular, it is considered a spread spectrum (SS) transmission scheme in conjunction with a fusion center that can exploit cooperative diversity, without requiring stringent synchronization between nodes. The idea consists of simultaneous transmission of the common message among the nodes and a Rake reception at the fusion center. The proposed solution is mainly motivated by two goals: the necessity to have simple nodes (to this aim we move the computational complexity to the receiver onboard the UAV), and the importance to guarantee high levels of energy efficiency of the network, thus increasing the network lifetime. The proposed scheme is analyzed in order to better understand the effectiveness of the approach presented. The performance metrics considered are both the theoretical limit on the maximum amount of data that can be collected by the receiver, as well as the error probability with a given modulation scheme. Since we deal with a WSN, both of these performance are evaluated taking into consideration the energy efficiency of the network. The second scenario considers the use of a chain network for the detection of fires by using nodes that have a double function of sensors and routers. The first one is relative to the monitoring of a temperature parameter that allows to take a local binary decision of target (fire) absent/present. The second one considers that each node receives a decision made by the previous node of the chain, compares this with that deriving by the observation of the phenomenon, and transmits the final result to the next node. The chain ends at the sink node that transmits the received decision to the user. In this network the goals are to limit throughput in each sensor-to-sensor link and minimize probability of error at the last stage of the chain. This is a typical scenario of distributed detection. To obtain good performance it is necessary to define some fusion rules for each node to summarize local observations and decisions of the previous nodes, to get a final decision that it is transmitted to the next node. WSNs have been studied also under a practical point of view, describing both the main characteristics of IEEE802:15:4 standard and two commercial WSN platforms. By using a commercial WSN platform it is realized an agricultural application that has been tested in a six months on-field experimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work of the present thesis is focused on the implementation of microelectronic voltage sensing devices, with the purpose of transmitting and extracting analog information between devices of different nature at short distances or upon contact. Initally, chip-to-chip communication has been studied, and circuitry for 3D capacitive coupling has been implemented. Such circuits allow the communication between dies fabricated in different technologies. Due to their novelty, they are not standardized and currently not supported by standard CAD tools. In order to overcome such burden, a novel approach for the characterization of such communicating links has been proposed. This results in shorter design times and increased accuracy. Communication between an integrated circuit (IC) and a probe card has been extensively studied as well. Today wafer probing is a costly test procedure with many drawbacks, which could be overcome by a different communication approach such as capacitive coupling. For this reason wireless wafer probing has been investigated as an alternative approach to standard on-contact wafer probing. Interfaces between integrated circuits and biological systems have also been investigated. Active electrodes for simultaneous electroencephalography (EEG) and electrical impedance tomography (EIT) have been implemented for the first time in a 0.35 um process. Number of wires has been minimized by sharing the analog outputs and supply on a single wire, thus implementing electrodes that require only 4 wires for their operation. Minimization of wires reduces the cable weight and thus limits the patient's discomfort. The physical channel for communication between an IC and a biological medium is represented by the electrode itself. As this is a very crucial point for biopotential acquisitions, large efforts have been carried in order to investigate the different electrode technologies and geometries and an electromagnetic model is presented in order to characterize the properties of the electrode to skin interface.