11 resultados para 170205 Neurocognitive Patterns and Neural Networks

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are only a few insights concerning the influence that agronomic and management variability may have on superficial scald (SS) in pears. Abate Fétel pears were picked during three seasons (2018, 2019 and 2020) from thirty commercial orchards in the Emilia Romagna region, Italy. Using a multivariate statistical approach, high heterogeneity between farms for SS development after cold storage with regular atmosphere was demonstrated. Indeed, some factors seem to affect SS in all growing seasons: high yields, soil texture, improper irrigation and Nitrogen management, use of plant growth regulators, late harvest, precipitations, Calcium and cow manure, presence of nets, orchard age, training system and rootstock. Afterwards, we explored the spatio/temporal variability of fruit attributes in two pear orchards. Environmental and physiological spatial variables were recorded by a portable RTK GPS. High spatial variability of the SS index was observed. Through a geostatistical approach, some characteristics, including soil electrical conductivity and fruit size, have been shown to be negatively correlated with SS. Moreover, regression tree analyses were applied suggesting the presence of threshold values of antioxidant capacity, total phenolic content, and acidity against SS. High pulp firmness and IAD values before storage, denoting a more immature fruit, appeared to be correlated with low SS. Finally, a convolution neural networks (CNN) was tested to detect SS and the starch pattern index (SPI) in pears for portable device applications. Preliminary statistics showed that the model for SS had low accuracy but good precision, and the CNN for SPI denoted good performances compared to the Ctifl and Laimburg scales. The major conclusion is that Abate Fétel pears can potentially be stored in different cold rooms, according to their origin and quality features, ensuring the best fruit quality for the final consumers. These results might lead to a substantial improvement in the Italian pear industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The question addressed by this dissertation is how the human brain builds a coherent representation of the body, and how this representation is used to recognize its own body. Recent approaches by neuroimaging and TMS revealed hints for a distinct brain representation of human body, as compared with other stimulus categories. Neuropsychological studies demonstrated that body-parts and self body-parts recognition are separate processes sub-served by two different, even if possibly overlapping, networks within the brain. Bodily self-recognition is one aspect of our ability to distinguish between self and others and the self/other distinction is a crucial aspect of social behaviour. This is the reason why I have conducted a series of experiment on subjects with everyday difficulties in social and emotional behaviour, such as patients with autism spectrum disorders (ASD) and patients with Parkinson’s disease (PD). More specifically, I studied the implicit self body/face recognition (Chapter 6) and the influence of emotional body postures on bodily self-processing in TD children as well as in ASD children (Chapter 7). I found that the bodily self-recognition is present in TD and in ASD children and that emotional body postures modulate self and others’ body processing. Subsequently, I compared implicit and explicit bodily self-recognition in a neuro-degenerative pathology, such as in PD patients, and I found a selective deficit in implicit but not in explicit self-recognition (Chapter 8). This finding suggests that implicit and explicit bodily self-recognition are separate processes subtended by different mechanisms that can be selectively impaired. If the bodily self is crucial for self/other distinction, the space around the body (personal space) represents the space of interaction and communication with others. When, I studied this space in autism, I found that personal space regulation is impaired in ASD children (Chapter 9).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Musical tension is what drives our emotional experience in music listening. However, the specific role of the musical elements involved in tension-resolution perception remains largely unclear. This dissertation aims to advance the understanding of tension perception dynamics related to sensory consonance-dissonance. The first experiment aimed to design and validate a new crossmodal proprioceptive device for tension rating that overcomes some of the limitations of known tools. As a result, a psychophysical equation for the matching of physical force and psychological force was presented. The same tool was subsequently used in the second and third experiments to collect ratings of perceived tension and movement in harmonic musical intervals and standard noises. Besides, a visual analog scale (VAS) was used to allow a comparison of these two methods. The results confirmed the close relationship between sensory dissonance and perceived tension. Moreover, stimuli in the higher pitch register were perceived as more tense, confirming the primary role of pitch as a mediator of tension. The comparison between ratings obtained with the proprioceptive device and the VAS highlighted the tendency to give higher tension ratings using the VAS compared to the proprioceptive device. In the last experiment, brain electrical activity was recorded during the presentation of short tension-resolution patterns created using the most tense (perfect unison, fourth, and fifth) and the least tense harmonic intervals (augmented fourth, minor second, and inverted major seventh) to understand how consonance-dissonance can convey meaningful information on perceived tension-resolution. Results showed overall larger effects during the ‘resolution’ condition compare to the ‘tension induction’ condition, indicating that the resolution of harmonic instability towards a state of stability may be more salient than its opposite. A late positive component (LPC) was elicited, possibly reflecting deeper processing of tension-related meaning within a minimal harmonic context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis is composed of a collection of works written in the period 2019-2022, whose aim is to find methodologies of Artificial Intelligence (AI) and Machine Learning to detect and classify patterns and rules in argumentative and legal texts. We define our approach “hybrid”, since we aimed at designing hybrid combinations of symbolic and sub-symbolic AI, involving both “top-down” structured knowledge and “bottom-up” data-driven knowledge. A first group of works is dedicated to the classification of argumentative patterns. Following the Waltonian model of argument and the related theory of Argumentation Schemes, these works focused on the detection of argumentative support and opposition, showing that argumentative evidences can be classified at fine-grained levels without resorting to highly engineered features. To show this, our methods involved not only traditional approaches such as TFIDF, but also some novel methods based on Tree Kernel algorithms. After the encouraging results of this first phase, we explored the use of a some emerging methodologies promoted by actors like Google, which have deeply changed NLP since 2018-19 — i.e., Transfer Learning and language models. These new methodologies markedly improved our previous results, providing us with best-performing NLP tools. Using Transfer Learning, we also performed a Sequence Labelling task to recognize the exact span of argumentative components (i.e., claims and premises), thus connecting portions of natural language to portions of arguments (i.e., to the logical-inferential dimension). The last part of our work was finally dedicated to the employment of Transfer Learning methods for the detection of rules and deontic modalities. In this case, we explored a hybrid approach which combines structured knowledge coming from two LegalXML formats (i.e., Akoma Ntoso and LegalRuleML) with sub-symbolic knowledge coming from pre-trained (and then fine-tuned) neural architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of stone and its types of processing have been very important in the vernacular architecture of the cross-border Carso. In Carso this represents an important legacy of centuries and has a uniform typological characteristic to a great extent. The stone was the main constituent of the local architecture, setting and shaping the human environment, incorporating the history of places through their specific symbolic and constructive language. The primary aim of this research is the recognition of the constructive rules and the values embedded in the Carso rural architecture by use and processing of stone. Central to this investigation is the typological reading, aimed to analyze the constructive language expressed by this legacy, through the analysis of the relationship between type, technique and material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People are daily faced with intertemporal choice, i.e., choices differing in the timing of their consequences, frequently preferring smaller-sooner rewards over larger-delayed ones, reflecting temporal discounting of the value of future outcomes. This dissertation addresses two main goals. New evidence about the neural bases of intertemporal choice is provided. Following the disruption of either the medial orbitofrontal cortex or the insula, the willingness to wait for larger-delayed outcomes is affected in odd directions, suggesting the causal involvement of these areas in regulating the value computation of rewards available with different timings. These findings were also supported by a reported imaging study. Moreover, this dissertation provides new evidence about how temporal discounting can be modulated at a behavioral level through different manipulations, e.g., allowing individuals to think about the distant time, pairing rewards with aversive events, or changing their perceived spatial position. A relationship between intertemporal choice, moral judgements and aging is also discussed. All these findings link together to support a unitary neural model of temporal discounting according to which signals coming from several cortical (i.e., medial orbitofrontal cortex, insula) and subcortical regions (i.e., amygdala, ventral striatum) are integrated to represent the subjective value of both earlier and later rewards, under the top-down regulation of dorsolateral prefrontal cortex. The present findings also support the idea that the process of outcome evaluation is strictly related to the ability to pre-experience and envision future events through self-projection, the anticipation of visceral feelings associated with receiving rewards, and the psychological distance from rewards. Furthermore, taking into account the emotions and the state of arousal at the time of decision seems necessary to understand impulsivity associated with preferring smaller-sooner goods in place of larger-later goods.