1 resultado para 170101 Biological Psychology (Neuropsychology Psychopharmacology Physiological Psychology)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β-Amyloid (βA) peptide is the major component of senile plaques that are one of the hallmarks of Alzheimer’s Disease (AD). It is well recognized that Aβ exists in multiple assembly states, such as soluble oligomers or insoluble fibrils, which affect neuronal viability and may contribute to disease progression. In particular, common βA-neurotoxic mechanisms are Ca2+ dyshomeostasis, reactive oxygen species (ROS) formation, altered signaling, mitochondrial dysfunction and neuronal death such as necrosis and apoptosis. Recent study shows that the ubiquitin-proteasome pathway play a crucial role in the degradation of short-lived and regulatory proteins that are important in a variety of basic and pathological cellular processes including apoptosis. Guanosine (Guo) is a purine nucleoside present extracellularly in brain that shows a spectrum of biological activities, both under physiological and pathological conditions. Recently it has become recognized that both neurons and glia also release guanine-based purines. However, the role of Guo in AD is still not well established. In this study, we investigated the machanism basis of neuroprotective effects of GUO against Aβ peptide-induced toxicity in neuronal (SH-SY5Y), in terms of mitochondrial dysfunction and translocation of phosphatidylserine (PS), a marker of apoptosis, using MTT and Annexin-V assay, respectively. In particular, treatment of SH-SY5Y cells with GUO (12,5-75 μM) in presence of monomeric βA25-35 (neurotoxic core of Aβ), oligomeric and fibrillar βA1-42 peptides showed a strong dose-dependent inhibitory effects on βA-induced toxic events. The maximum inhibition of mitochondrial function loss and PS translocation was observed with 75 μM of Guo. Subsequently, to investigate whether neuroprotection of Guo can be ascribed to its ability to modulate proteasome activity levels, we used lactacystin, a specific inhibitor of proteasome. We found that the antiapoptotic effects of Guo were completely abolished by lactacystin. To rule out the possibility that this effects resulted from an increase in proteasome activity by Guo, the chymotrypsin-like activity was assessed employing the fluorogenic substrate Z-LLL-AMC. The treatment of SH-SY5Y with Guo (75 μM for 0-6 h) induced a strong increase, in a time-dependent manner, of proteasome activity. In parallel, no increase of ubiquitinated protein levels was observed at similar experimental conditions adopted. We then evaluated an involvement of anti and pro-apoptotic proteins such as Bcl-2, Bad and Bax by western blot analysis. Interestingly, Bax levels decreased after 2 h treatment of SH-SY5Y with Guo. Taken together, these results demonstrate that Guo neuroprotective effects against βA-induced apoptosis are mediated, at least partly, via proteasome activation. In particular, these findings suggest a novel neuroprotective pathway mediated by Guo, which involves a rapid degradation of pro-apoptotic proteins by the proteasome. In conclusion, the present data, raise the possibility that Guo could be used as an agent for the treatment of AD.