3 resultados para 16S rRNA mitochondrial gene
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
From September 2005 to December 2006, in order to define the prevalence of Helicobacter pullorum in broiler chickens, laying hens and turkey, a total of 365 caecum contents of animals reared in 76 different farms were collected at the slaughterhouse. A caecum content of a ostrich was also sampled. In addition, with the aim of investigating the occurrence of H. pullorum in humans, 151 faeces were collected at the Sant’Orsola-Malpighi University Hospital of Bologna from patients suffering of gastroenteritis. A modified Steele–McDermott membrane filter method was used. Gram-negative curved rod bacteria were preliminary identified as H. pullorum by a PCR assay based on 16S rRNA, then subjected to a RFLP-PCR assay to distinguish between H. pullorum and H. canadensis. One isolate from each farm was randomly selected for phenotypic characterization by biochemical methods and 1D SDSPAGE analysis of whole cell proteins profiles. Minimum Inhibitory Concentration (MIC) for seven different antibiotics were also determined by agar dilution method. Moreover, to examine the intraspecific genomic variability, two strains isolated from 17 different farms were submitted to genotyping by Pulse-Field Gel Electrophoresis (PFGE). In order to assess the molecular basis of fluorquinolone resistance in H. pullorum, gyrA of H. pullorum CIP 104787T was sequenced and nucleotide sequences of the Quinolone Resistance Determining Region (QRDR) of a total of 18 poultry isolates, with different MIC values for ciprofloxacin and nalidixic acid, were compared. According to the PCR and PCR-RFLP results, 306 out of 366 animals examined were positive for H. pullorum (83,6%) and 96,1% of farms resulted infected. All positive samples showed a high number of colonies (>50) phenotipically consistent with H. pullorum on the first isolation media, which suggests that this microrganism, when present, colonizes the poultry caecum at an elevate load. No human sample resulted positive for H. pullorum. The 1D SDS-PAGE whole protein profile analysis showed high similarity among the 74 isolates tested and with the type strain H. pullorum CIP 104787T. Regarding the MIC values, a monomodal distribution was found for ampicillin, chloramphenicol, gentamicin and nalidixic acid, whereas a bimodal trend was noticed for erythromycin, ciprofloxacin and tetracycline (indicating an acquired resistance for these antibiotics). Applying the breakpoints indicated by the CSLI, we may assume that all the H. pullorum tested are sensitive only to gentamicin. The intraspecific genomic variability observed in this study confirm that this species don’t have a clonal population structure, as motioned by other autors. The 2490 bp gyrA gene of H. pullorum CIP104787T with an Open Reading Frame (ORF) encoding a polypeptide of 829 amino acids was for the first time sequenced and characterized. All ciprofloxacin resistant poultry isolates showed ACA®ATA (Thr®Ile) substitution at codon 84 of gyrA corresponding to codons of gyrA 86, 87 and 83 of the Campylobacter jejuni, H. pylori and Escherichia coli, respectively. This substitution was functionally confirmed to be associated with the ciprofloxacin resistant phenotype of poultry isolates. This is the first report of isolation of H. pullorum in turkey and in ostrich, indicating that poultry species are the reservoir of this potential zoonotic microorganisms. In order to understand the potential role as food-borne human pathogen of H. pullorum, further studies must be carried on.
Resumo:
MITOCHONDRIAL DYSFUNCTION IN HEREDITARY OPTIC NEUROPATHIES Mitochondrial pathologies are a heterogeneous group of clinical manifestations characterized by oxidative phosphorylation impairment. At the beginning of their recognition mitochondrial pathologies were regarded as rare disorders but indeed they are more frequent than originally thought. Due to the unique mitochondria peculiarities mitochondrial pathologies can be caused by mutations in both mitochondrial and nuclear genomes. The poor knowledge of pathologic mechanism of these disorders has not allowed a real development of the “mitochondrial medicine”, that is currently limited to symptoms mitigation. Leber hereditary optic neuropathy (LHON) was the first pathology to be linked to a point mutation in the mtDNA. The mechanism by which point mutations in mitochondrial gene encoding Complex I subunits leads to optic nerve degeneration is still unknown, although is well accepted that other genetic or environmental factors are involved in the modulation of pathology, where a pivotal role is certainly played by oxidative stress. We studied the relationship between the Ala16Val dimorphism in the mitochondrial targeting sequence of nuclear gene SOD2 and the 3460/ND1 LHON mutation. Our results show that, in control population, the heterozygous SOD2 genotype is associated to a higher activity and quantity of MnSOD, particularly with respect to Val homozygotes. Furthermore, we demonstrated that LHON patients harboring at least one Ala allele are characterized by an increased MnSOD activity with respect to relative control population. Since the ATP synthesis rate – severely reduced in LHON patients lymphocytes - is not affected by the SOD2 genotype, we concluded that SOD2 gene could modulate the pathogenicity of LHON mutations through a mechanism associated to an increase of reactive oxygen species production. Autosomal dominant optic atrophy (ADOA) is a pathology linked to mutations in nuclear gene encoding Opa1, a dynamin-related protein localized in the mitochondrial matrix. Although the clinical course is slightly different, the endpoint of ADOA is exactly the same of LHON: optic nerve degeneration with specific involvement of retinal ganglion cells. Opa1 is a relatively new protein, whose major role is the regulation of mitochondrial fusion. Mitochondrial morphology is the results of the equilibrium between two opposite force: fusion and fission, two processes that have to be finely regulated in order to preserve mitochondrial and cellular physiology. We studied fibroblasts deriving from ADOA patients characterized by a new deletion in the GTPase domain of the OPA1 gene. The biochemical characterization of ADOA and control fibroblasts has concerned the evaluation of ATP synthesis rate, mitochondrial membrane potential in different metabolic conditions and the morphological status of mitochondria. Regarding ATP synthesis rate we did not find significant differences between ADOA and control fibroblasts even though a trend toward increased reduction in ADOA samples is observed when fibroblasts are grown in absence of glucose or in the medium containing gramicidin. Furthermore, we found that also in ADOA fibroblasts membrane potential is actively maintained by proton pumping of fully functional respiratory chain complexes. Our results indicate that the mutation found in the pedigree analyzed acts primary impairing the mitochondrial fusion without affecting the energy production, supporting the notion that cell function is tightly linked to mitochondrial morphology. Mitochondrial dysfunctions are acquiring great attention because of their recognized relevance not only in aging but also in age-related pathologies including cancer, cardiovascular disease, type II diabetes, and neurodegenerative disorders. The involvement of mitochondria in such detrimental pathologies that, currently, have become so common enhances the necessity of standardization of therapeutic strategies capable of rescuing the normal mitochondrial function. In order to propose an alternative treatment for energy deficiency-disorders we tested the effect of substrates capable to stimulate the substrate-level phosphorylation on viability and energy availability in different experimental models grown under different metabolic conditions. In fibroblasts, the energy defect was achieved by culturing cells in presence of oligomycin, an inhibitor of ATP synthase complex. NARP cybrids have been used as model of mitochondrial pathology. Cell viability and ATP content have been considered as parameters to assay the capability of exogenous substrate to rescue energy failure. Our results suggest that patients suffering for some forms of ATP synthase deficiency, or characterized by a deficiency in energy production, might benefit from dietary or pharmacological treatment based on supplementation of α-ketoglutarate and aspartate.
Resumo:
Identification and genetic diversity of phytoplasmas infecting tropical plant species, selected among those most agronomically relevant in South-east Asia and Latin America were studied. Correlation between evolutionary divergence of relevant phytoplasma strains and their geographic distribution by comparison on homologous genes of phytoplasma strains detected in the same or related plant species in other geographical areas worldwide was achieved. Molecular diversity was studied on genes coding ribosomal proteins, groEL, tuf and amp besides phytoplasma 16S rRNA. Selected samples infected by phytoplasmas belonging to diverse ribosomal groups were also studied by in silico RFLP followed by phylogenetic analyses. Moreover a partial genome annotation of a ‘Ca. P. brasiliense’ strain was done towards future application for epidemiological studies. Phytoplasma presence in cassava showing frog skin (CFSD) and witches’ broom (CWB) diseases in Costa Rica - Paraguay and in Vietnam – Thailand, respectively, was evaluated. In both cases, the diseases were associated with phytoplasmas related to aster yellows, apple proliferation and “stolbur” groups, while only phytoplasma related to X-disease group in CFSD, and to hibiscus witches’ broom, elm yellows and clover proliferation groups in CWB. Variability was found among strains belonging to the same ribosomal group but having different geographic origin and associated with different disease. Additionally, a dodder transmission assay to elucidate the role of phytoplasmas in CWB disease was carried out, and resulted in typical phytoplasma symptoms in periwinkle plants associated with the presence of aster yellows-related strains. Lethal wilt disease, a severe disease of oil palm in Colombia that is spreading throughout South America was also studied. Phytoplasmas were detected in symptomatic oil palm and identified as ‘Ca. P. asteris’, ribosomal subgroup 16SrI-B, and were distinguished from other aster yellows phytoplasmas used as reference strains; in particular, from an aster yellows strain infecting corn in the same country.