14 resultados para 150602 Tourism Forecasting

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new methodology is being devised for ensemble ocean forecasting using distributions of the surface wind field derived from a Bayesian Hierarchical Model (BHM). The ocean members are forced with samples from the posterior distribution of the wind during the assimilation of satellite and in-situ ocean data. The initial condition perturbations are then consistent with the best available knowledge of the ocean state at the beginning of the forecast and amplify the ocean response to uncertainty only in the forcing. The ECMWF Ensemble Prediction System (EPS) surface winds are also used to generate a reference ocean ensemble to evaluate the performance of the BHM method that proves to be eective in concentrating the forecast uncertainty at the ocean meso-scale. An height month experiment of weekly BHM ensemble forecasts was performed in the framework of the operational Mediterranean Forecasting System. The statistical properties of the ensemble are compared with model errors throughout the seasonal cycle proving the existence of a strong relationship between forecast uncertainties due to atmospheric forcing and the seasonal cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PROBLEM In the last few years farm tourism or agritourism as it is also referred to has enjoyed increasing success because of its generally acknowledged role as a promoter of economic and social development of rural areas. As a consequence, a plethora of studies have been dedicated to this tourist sector, focusing on a variety of issues. Nevertheless, despite the difficulties of many farmers to orient their business towards potential customers, the contribution of the marketing literature has been moderate. PURPOSE This dissertation builds upon studies which advocate the necessity of farm tourism to innovate itself according to the increasingly demanding needs of customers. Henceforth, the purpose of this dissertation is to critically evaluate the level of professionalism reached in the farm tourism market within a marketing approach. METHODOLOGY This dissertation is a cross-country perspective incorporating the marketing of farm tourism studied in Germany and Italy. Hence, the marketing channels of this tourist sector are examined both from the supply and the demand side by means of five exploratory studies. The data collection has been conducted in the timeframe of 2006 to 2009 in manifold ways (online survey, catalogues of industry associations, face-to-face interviews, etc.) according to the purpose of the research of each study project. The data have been analyzed using multivariate statistical analysis. FINDINGS A comprehensive literature review provides the state of the art of the main differences and similarities of farm tourism in the two countries of study. The main findings contained in the empirical chapters provide insights on many aspects of agritourism including how the expectations of farm operators and customers differ, which development scenarios of farm tourism are more likely to meet individuals’ needs, how new technologies can impact the demand for farm tourism, etc. ORIGINALITY/VALUE The value of this study is in the investigation of the process by which farmers’ participation in the development of this sector intersects with consumer consumption patterns. Focusing on this process should allow farm operators and others including related businesses to more efficiently allocate resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this research is to demonstrate that the Clean Development Mechanism (CDM), an instrument created under a global international treaty, can achieve multiple objectives beyond those for which it has been established. As such, while being already a powerful tool to contribute to the global fight against climate change, the CDM can also be successful if applied to different sectors not contemplated before. In particular, this research aimed at demonstrating that a wider utilization of the CDM in the tourism sector can represent an innovative way to foster sustainable tourism and generate additional benefits. The CDM was created by Article 12 of the Kyoto Protocol of the United Nations Framework Convention on Climate Change (UNFCCC) and represents an innovative tool to reduce greenhouse gases emissions through the implementation of mitigation activities in developing countries which generate certified emission reductions (CERs), each of them equivalent to one ton of CO2 not emitted in the atmosphere. These credits can be used for compliance reasons by industrialized countries in achieving their reduction targets. The logic path of this research begins with an analysis of the scientific evidences of climate change and its impacts on different economic sectors including tourism and it continues with a focus on the linkages between climate and the tourism sector. Then, it analyses the international responses to the issue of climate change and the peculiar activities in the international arena addressing climate change and the tourism sector. The concluding part of the work presents the objectives and achievements of the CDM and its links to the tourism sector by considering case studies of existing projects which demonstrate that the underlying question can be positively answered. New opportunities for the tourism sector are available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates. CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992). Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance. CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrologic risk (and the hydro-geologic one, closely related to it) is, and has always been, a very relevant issue, due to the severe consequences that may be provoked by a flooding or by waters in general in terms of human and economic losses. Floods are natural phenomena, often catastrophic, and cannot be avoided, but their damages can be reduced if they are predicted sufficiently in advance. For this reason, the flood forecasting plays an essential role in the hydro-geological and hydrological risk prevention. Thanks to the development of sophisticated meteorological, hydrologic and hydraulic models, in recent decades the flood forecasting has made a significant progress, nonetheless, models are imperfect, which means that we are still left with a residual uncertainty on what will actually happen. In this thesis, this type of uncertainty is what will be discussed and analyzed. In operational problems, it is possible to affirm that the ultimate aim of forecasting systems is not to reproduce the river behavior, but this is only a means through which reducing the uncertainty associated to what will happen as a consequence of a precipitation event. In other words, the main objective is to assess whether or not preventive interventions should be adopted and which operational strategy may represent the best option. The main problem for a decision maker is to interpret model results and translate them into an effective intervention strategy. To make this possible, it is necessary to clearly define what is meant by uncertainty, since in the literature confusion is often made on this issue. Therefore, the first objective of this thesis is to clarify this concept, starting with a key question: should be the choice of the intervention strategy to adopt based on the evaluation of the model prediction based on its ability to represent the reality or on the evaluation of what actually will happen on the basis of the information given by the model forecast? Once the previous idea is made unambiguous, the other main concern of this work is to develope a tool that can provide an effective decision support, making possible doing objective and realistic risk evaluations. In particular, such tool should be able to provide an uncertainty assessment as accurate as possible. This means primarily three things: it must be able to correctly combine all the available deterministic forecasts, it must assess the probability distribution of the predicted quantity and it must quantify the flooding probability. Furthermore, given that the time to implement prevention strategies is often limited, the flooding probability will have to be linked to the time of occurrence. For this reason, it is necessary to quantify the flooding probability within a horizon time related to that required to implement the intervention strategy and it is also necessary to assess the probability of the flooding time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the frame of EU rural policy, always more oriented towards environmental concerns and green livelihoods, Romania stands out for the predominance of rural areas and high nature value farming. The country has to face the challenge of joining the modernization process of rural farming systems with the valorization of local assets. Tourism has emerged as one of the main drivers of change and contributors for a sustainable exploitation of local resources. Rural tourism (RT) can foster the enhancement of the territorial capital (TC), the preservation of public goods (PGs) and the promotion of a more environmental oriented livelihood. The research focuses on a case study area, two valleys from Maramureş, where environmental approaches as diversification strategies are partially explored. The work investigates the role of tourism initiatives for the promotion of green oriented practices. The first part of the work is based on a literature review and interdisciplinary analysis of secondary data to identify the key issues: from rural development policy, to the concept of TC, of PGs and RT. The Romanian development programmes and related strategies are investigated; afterwards the characteristics of the County and the role of RT as diversification and valorisation policies is considered. The second part is based on the collection of primary data through interviews to different local stakeholders (farmers owners of rural guesthouses, local administrators, networks and artisans). The main frequencies are analyzed, a cluster analysis is computed to evaluate the similarities within the most representative groups and a comparative analysis is carried out between the two Valleys. The frame of the analysis is based on a set of indicators following the dimensions of the TC, to assess the characteristics of the local stakeholders and to outline the perception about the local PGs and on the adopted strategies to manage the territory. Final considerations are elaborated and few scenarios are outlined, giving relevance to the importance of improving awareness and creating embeddedness among public-private local stakeholders and resources as a tool for a socio-economic and environmental development of the area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research activity studied how the uncertainties are concerned and interrelated through the multi-model approach, since it seems to be the bigger challenge of ocean and weather forecasting. Moreover, we tried to reduce model error throughout the superensemble approach. In order to provide this aim, we created different dataset and by means of proper algorithms we obtained the superensamble estimate. We studied the sensitivity of this algorithm in function of its characteristics parameters. Clearly, it is not possible to evaluate a reasonable estimation of the error neglecting the importance of the grid size of ocean model, for the large amount of all the sub grid-phenomena embedded in space discretizations that can be only roughly parametrized instead of an explicit evaluation. For this reason we also developed a high resolution model, in order to calculate for the first time the impact of grid resolution on model error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental computer models are deterministic models devoted to predict several environmental phenomena such as air pollution or meteorological events. Numerical model output is given in terms of averages over grid cells, usually at high spatial and temporal resolution. However, these outputs are often biased with unknown calibration and not equipped with any information about the associated uncertainty. Conversely, data collected at monitoring stations is more accurate since they essentially provide the true levels. Due the leading role played by numerical models, it now important to compare model output with observations. Statistical methods developed to combine numerical model output and station data are usually referred to as data fusion. In this work, we first combine ozone monitoring data with ozone predictions from the Eta-CMAQ air quality model in order to forecast real-time current 8-hour average ozone level defined as the average of the previous four hours, current hour, and predictions for the next three hours. We propose a Bayesian downscaler model based on first differences with a flexible coefficient structure and an efficient computational strategy to fit model parameters. Model validation for the eastern United States shows consequential improvement of our fully inferential approach compared with the current real-time forecasting system. Furthermore, we consider the introduction of temperature data from a weather forecast model into the downscaler, showing improved real-time ozone predictions. Finally, we introduce a hierarchical model to obtain spatially varying uncertainty associated with numerical model output. We show how we can learn about such uncertainty through suitable stochastic data fusion modeling using some external validation data. We illustrate our Bayesian model by providing the uncertainty map associated with a temperature output over the northeastern United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is divided in three chapters. In the first chapter we analyse the results of the world forecasting experiment run by the Collaboratory for the Study of Earthquake Predictability (CSEP). We take the opportunity of this experiment to contribute to the definition of a more robust and reliable statistical procedure to evaluate earthquake forecasting models. We first present the models and the target earthquakes to be forecast. Then we explain the consistency and comparison tests that are used in CSEP experiments to evaluate the performance of the models. Introducing a methodology to create ensemble forecasting models, we show that models, when properly combined, are almost always better performing that any single model. In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the different motivations that stand behind the need of declustering seismic catalogs. Using a theorem of the modern probability (Le Cam's theorem) we show that the declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is usually considered fundamental to transform exceedance rates in exceedance probabilities in the PSHA framework. We present a method to correct PSHA for declustering, building a more realistic PSHA. In the last chapter we explore the methods that are commonly used to take into account the epistemic uncertainty in PSHA. The most widely used method is the logic tree that stands at the basis of the most advanced seismic hazard maps. We illustrate the probabilistic structure of the logic tree, and then we show that this structure is not adequate to describe the epistemic uncertainty. We then propose a new probabilistic framework based on the ensemble modelling that properly accounts for epistemic uncertainties in PSHA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rural tourism is relatively new product in the process of diversification of the rural economy in Republic of Macedonia. This study used desk research and life story interviews of rural tourism entrepreneurs as qualitative research method to identify prevalent success influential factors. Further quantitative analysis was applied in order to measure the strength of influence of identified success factors. The primary data for the quantitative research was gathered using telephone questionnaire composed of 37 questions with 5-points Likert scale. The data was analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) by SmartPLS 3.1.6. Results indicated that human capital, social capital, entrepreneurial personality and external business environment are predominant influential success factors. However, human capital has non-significant direct effect on success (p 0.493) nonetheless the effect was indirect with high level of partial mediation through entrepreneurial personality as mediator (VAF 73%). Personality of the entrepreneur, social capital and business environment have direct positive affect on entrepreneurial success (p 0.001, 0.003 and 0.045 respectably). Personality also mediates the positive effect of social capital on entrepreneurial success (VAF 28%). Opposite to the theory the data showed no interaction between social and human capital on the entrepreneurial success. This research suggests that rural tourism accommodation entrepreneurs could be more successful if there is increased support in development of social capital in form of conservation of cultural heritage and natural attractions. Priority should be finding the form to encourage and support the establishment of formal and informal associations of entrepreneurs in order to improve the conditions for management and marketing of the sector. Special support of family businesses in the early stages of the operation would have a particularly positive impact on the success of rural tourism. Local infrastructure, access to financial instruments, destination marketing and entrepreneurial personality have positive effect on success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rural tourism has been widely promoted in the European Union as an effective measure counteracting economic and social challenges facing rural areas especially those with declining agriculture economies. Particularly its role is seen in provision and maintenance of public goods which are more and more demanded by the public and considered in the policymaking. In Kosovo, rural tourism has been developed through the support of the international organizations and private sector initiatives, with primary aim to generate additional income for rural households and sustainable management of natural and cultural resources. Anyhow, it could be stated that the use of territorial capital to enhance the quality of the tourist offer and undertake promotion at wider circles of people has not been well explored so far, particularly possible links with agriculture that would satisfy visitors demand. In this regard this research study analyzes involvement of local stakeholders and use of territorial capital to develop tourist offer in rural areas of Kosovo. Beside, study applies comparative approach with other two areas of the European Union, Appennino Bolognese in Italy and Alpujara in Spain, to understand and compare the process of rural tourism development and demand characteristics between Kosovo and these areas. A survey has been conducted in all three study areas with rural tourism visitors to understand their preferences for public and private goods and services when visiting rural areas and the role of agriculture in sustaining rural tourism. Results show that there is a potential to link rural tourism with agriculture in Kosovo, which would help in sustaining agriculture and add additional value to local food products, which in return would enhance the tourist offer and make it more attractive for the visitors but also for the farmers as an additional revenue generating sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is focused on the study of saltwater intrusion in coastal aquifers, and in particular on the realization of conceptual schemes to evaluate the risk associated with it. Saltwater intrusion depends on different natural and anthropic factors, both presenting a strong aleatory behaviour, that should be considered for an optimal management of the territory and water resources. Given the uncertainty of problem parameters, the risk associated with salinization needs to be cast in a probabilistic framework. On the basis of a widely adopted sharp interface formulation, key hydrogeological problem parameters are modeled as random variables, and global sensitivity analysis is used to determine their influence on the position of saltwater interface. The analyses presented in this work rely on an efficient model reduction technique, based on Polynomial Chaos Expansion, able to combine the best description of the model without great computational burden. When the assumptions of classical analytical models are not respected, and this occurs several times in the applications to real cases of study, as in the area analyzed in the present work, one can adopt data-driven techniques, based on the analysis of the data characterizing the system under study. It follows that a model can be defined on the basis of connections between the system state variables, with only a limited number of assumptions about the "physical" behaviour of the system.