2 resultados para 150-250 µm
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Manipolazione del metabolismo degli xenobiotici da frutta convenzionale ed attività chemiopreventiva
Resumo:
A reduced cancer risk associated with fruit and vegetable phytochemicals initially dictated chemopreventive approaches focused on specific green variety consumption or even single nutrient supplementations. However, these strategies not only failed to provide any health benefits but gave rise to detrimental effects. In parallel, public-health chemoprevention programmes were developed in the USA and Europe to increase whole vegetable consumption. Among these, the National Cancer Institute (NCI) sponsored plan “5 to 9 a day for a better health” was one of the most popular. This campaign promoted wide food choice through the consumption of at least 5 to 9 servings a day of colourful fruits and vegetables. In this study the effects of the diet suggested by NCI on transcription, translation and catalytic activity of both xenobiotic metabolizing (XME) and antioxidant enzymes were studied in the animal model. In fact, the boost of both antioxidant defences and “good” phase-II together with down-regulation of “bad” phase-I XMEs is still considered one of the most widely-used strategies of cancer control. Six male Sprague Dawley rats for each treatment group were used. According to the Italian Society of Human Nutrition, a serving of fruit, vegetables and leafy greens corresponds to 150, 250 and 50 g, respectively, in a 70 kg man. Proportionally, rats received one or five servings of lyophilized onion, tomato, peach, black grape or lettuce – for white, red, yellow, violet or green diet, respectively - or five servings of each green (“5 a day” diet) by oral gavage daily for 10 consecutive days. Liver subcellular fractions were tested for various cytochrome P450 (CYP) linked-monooxygenases, phase-II supported XMEs such as glutathione S-transferase (GST) and UDP-glucuronosyl transferase (UDPGT) as well as for some antioxidant enzymes. Hepatic transcriptional and translational effects were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. dROMs test was used to measure plasmatic oxidative stress. Routine haematochemical parameters were also monitored. While the five servings administration didn’t significantly vary XME catalytic activity, the lower dose caused a complex pattern of CYP inactivation with lettuce exerting particularly strong effects (a loss of up to 43% and 45% for CYP content and CYP2B1/2-linked XME, respectively; P<0.01). “5 a day” supplementation produced the most pronounced modulations (a loss of up to 60% for CYP2E1-linked XME and a reduction of CYP content of 54%; P<0.01). Testosterone hydroxylase activity confirmed these results. RT-PCR and Western blot analysis revealed that the “5 a day” diet XMEs inactivations were a result of both a transcriptional and a translational effect while lettuce didn’t exert such effects. All administrations brought out none or fewer modulation of phase-II supported XMEs. Apart from “5 a day” supplementation and the single serving of lettuce, which strongly induced DT- diaphorase (an increase of up to 141 and 171%, respectively; P<0.01), antioxidant enzymes were not significantly changed. RT-PCR analysis confirmed DT-diaphorase induction brought about by the administration of both “5 a day” diet and a single serving of lettuce. Furthermore, it unmasked a similar result for heme-oxygenase. dROMs test provided insight into a condition of high systemic oxidative stress as a consequence of animal diet supplementation with “5 a day” diet and a single serving of lettuce (an increase of up to 600% and 900%, respectively; P<0.01). Haematochemical parameters were mildly affected by such dietary manipulations. According to the classical chemopreventive theory, these results could be of particular relevance. In fact, even if antioxidant enzymes were only mildly affected, the phase-I inactivating ability of these vegetables would be a worthy strategy to cancer control. However, the recorded systemic considerable amount of reactive oxygen species and the complexity of these enzymes and their functions suggest caution in the widespread use of vegan/vegetarian diets as human chemopreventive strategies. In fact, recent literature rather suggests that only diets rich in fruits and vegetables and poor in certain types of fat, together with moderate caloric intake, could be associated with reduced cancer risk.
Resumo:
The Northern Apennines (NA) chain is the expression of the active plate margin between Europe and Adria. Given the low convergence rates and the moderate seismic activity, ambiguities still occur in defining a seismotectonic framework and many different scenarios have been proposed for the mountain front evolution. Differently from older models that indicate the mountain front as an active thrust at the surface, a recently proposed scenario describes the latter as the frontal limb of a long-wavelength fold (> 150 km) formed by a thrust fault tipped around 17 km at depth, and considered as the active subduction boundary. East of Bologna, this frontal limb is remarkably very straight and its surface is riddled with small, but pervasive high- angle normal faults. However, west of Bologna, some recesses are visible along strike of the mountain front: these perturbations seem due to the presence of shorter wavelength (15 to 25 km along strike) structures showing both NE and NW-vergence. The Pleistocene activity of these structures was already suggested, but not quantitative reconstructions are available in literature. This research investigates the tectonic geomorphology of the NA mountain front with the specific aim to quantify active deformations and infer possible deep causes of both short- and long-wavelength structures. This study documents the presence of a network of active extensional faults, in the foothills south and east of Bologna. For these structures, the strain rate has been measured to find a constant throw-to-length relationship and the slip rates have been compared with measured rates of erosion. Fluvial geomorphology and quantitative analysis of the topography document in detail the active tectonics of two growing domal structures (Castelvetro - Vignola foothills and the Ghiardo plateau) embedded in the mountain front west of Bologna. Here, tilting and river incision rates (interpreted as that long-term uplift rates) have been measured respectively at the mountain front and in the Enza and Panaro valleys, using a well defined stratigraphy of Pleistocene to Holocene river terraces and alluvial fan deposits as growth strata, and seismic reflection profiles relationships. The geometry and uplift rates of the anticlines constrain a simple trishear fault propagation folding model that inverts for blind thrust ramp depth, dip, and slip. Topographic swath profiles and the steepness index of river longitudinal profiles that traverse the anti- clines are consistent with stratigraphy, structures, aquifer geometry, and seismic reflection profiles. Available focal mechanisms of earthquakes with magnitude between Mw 4.1 to 5.4, obtained from a dataset of the instrumental seismicity for the last 30 years, evidence a clear vertical separation at around 15 km between shallow extensional and deeper compressional hypocenters along the mountain front and adjacent foothills. In summary, the studied anticlines appear to grow at rates slower than the growing rate of the longer- wavelength structure that defines the mountain front of the NA. The domal structures show evidences of NW-verging deformation and reactivations of older (late Neogene) thrusts. The reconstructed river incision rates together with rates coming from several other rivers along a 250 km wide stretch of the NA mountain front and recently available in the literature, all indicate a general increase from Middle to Late Pleistocene. This suggests focusing of deformation along a deep structure, as confirmed by the deep compressional seismicity. The maximum rate is however not constant along the mountain front, but varies from 0.2 mm/yr in the west to more than 2.2 mm/yr in the eastern sector, suggesting a similar (eastward-increasing) trend of the apenninic subduction.