4 resultados para 130208 Mathematics and Numeracy Curriculum and Pedagogy
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.
Resumo:
This study concerns teachers’ use of digital technologies in student assessment, and how the learning that is developed through the use of technology in mathematics can be evaluated. Nowadays math teachers use digital technologies in their teaching, but not in student assessment. The activities carried out with technology are seen as ‘extra-curricular’ (by both teachers and students), thus students do not learn what they can do in mathematics with digital technologies. I was interested in knowing the reasons teachers do not use digital technology to assess students’ competencies, and what they would need to be able to design innovative and appropriate tasks to assess students’ learning through digital technology. This dissertation is built on two main components: teachers and task design. I analyze teachers’ practices involving digital technologies with Ruthven’s Structuring Features of Classroom Practice, and what relation these practices have to the types of assessment they use. I study the kinds of assessment tasks teachers design with a DGE (Dynamic Geometry Environment), using Laborde’s categorization of DGE tasks. I consider the competencies teachers aim to assess with these tasks, and how their goals relate to the learning outcomes of the curriculum. This study also develops new directions in finding how to design suitable tasks for student mathematical assessment in a DGE, and it is driven by the desire to know what kinds of questions teachers might be more interested in using. I investigate the kinds of technology-based assessment tasks teachers value, and the type of feedback they give to students. Finally, I point out that the curriculum should include a range of mathematical and technological competencies that involve the use of digital technologies in mathematics, and I evaluate the possibility to take advantage of technology feedback to allow students to continue learning while they are taking a test.
Resumo:
This thesis reports on the two main areas of our research: introductory programming as the traditional way of accessing informatics and cultural teaching informatics through unconventional pathways. The research on introductory programming aims to overcome challenges in traditional programming education, thus increasing participation in informatics. Improving access to informatics enables individuals to pursue more and better professional opportunities and contribute to informatics advancements. We aimed to balance active, student-centered activities and provide optimal support to novices at their level. Inspired by Productive Failure and exploring the concept of notional machine, our work focused on developing Necessity Learning Design, a design to help novices tackle new programming concepts. Using this design, we implemented a learning sequence to introduce arrays and evaluated it in a real high-school context. The subsequent chapters discuss our experiences teaching CS1 in a remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary school teachers to develop a learning module for teaching iteration using a visual programming environment. The research on teaching informatics principles through unconventional pathways, such as cryptography, aims to introduce informatics to a broader audience, particularly younger individuals that are less technical and professional-oriented. It emphasizes the importance of understanding informatics's cultural and scientific aspects to focus on the informatics societal value and its principles for active citizenship. After reflecting on computational thinking and inspired by the big ideas of science and informatics, we describe our hands-on approach to teaching cryptography in high school, which leverages its key scientific elements to emphasize its social aspects. Additionally, we present an activity for teaching public-key cryptography using graphs to explore fundamental concepts and methods in informatics and mathematics and their interdisciplinarity. In broadening the understanding of informatics, these research initiatives also aim to foster motivation and prime for more professional learning of informatics.
Resumo:
Questo lavoro trae spunto da un rinnovato interesse per l’«intuizione» e il «pensiero visivo» in matematica, e intende offrire un contributo alla discussione contemporanea su tali questioni attraverso lo studio del caso storico di Felix Klein. Dopo una breve ricognizione di alcuni dei saggi più significativi al riguardo, provenienti sia dalla filosofia della matematica, sia dalla pedagogia, dalle neuroscienze e dalle scienze cognitive, l’attenzione si concentra sulla concezione epistemologia di Klein, con particolare riferimento al suo uso del concetto di ‘intuizione’. Dai suoi lavori e dalla sua riflessione critica si ricavano non solo considerazioni illuminanti sulla fecondità di un approccio «visivo», ma argomenti convincenti a sostegno del ruolo cruciale dell’intuizione in matematica.