2 resultados para 1241
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
New concepts on porosity appraisal in ancient and modern construction materials. The role of Fractal Geometry on porosity characterization and transport phenomena. This work studied the potential of Fractal Geometry to the characterization of porous materials. Besides the descriptive aspects of the pore size distribution, the fractal dimensions have led to the development of rational relations for the prediction of permeability coefficients to fluid and heat transfer. The research considered natural materials used in historical buildings (rock and earth) as well as currently employed materials as hydraulic cement and technologically advanced materials such as silicon carbide or YSZ ceramics. The experimental results of porosity derived from the techniques of mercury intrusion and from the image analysis. Data elaboration was carried out according to established procedures of Fractal Geometry. It was found that certain classes of materials are clearly fractal and respond to simple patterns such as Sierpinski and Menger models. In several cases, however, the fractal character is not recognised because the microstructure of the material is based on different phases at different dimensional scales, and in consequence the “fractal dimensions” calculated from porosimetric data do not come within the standard range (less than 3). Using different type and numbers of fractal units is possible, however, to obtain “virtual” microstructures that have the fraction of voids and pore size distribution equivalent with the experimental ones for almost any material. Thus it was possible to take the expressions for the permeability and the thermal conduction which does not require empirical “constants”, these expressions have also provided values that are generally in agreement with the experimental available data. More problematic has been the fractal discussion of the geometry of the rupture of the material subjected to mechanical stress both external and internal applied. The results achieved on these issues are qualitative and prone to future studies. Keywords: Materials, Microstructure, Porosity, Fractal Geometry, Permeability, Thermal conduction, Mechanical strength.
Resumo:
This thesis was aimed at verifying the role of the superior colliculus (SC) in human spatial orienting. To do so, subjects performed two experimental tasks that have been shown to involve SC’s activation in animals, that is a multisensory integration task (Experiment 1 and 2) and a visual target selection task (Experiment 3). To investigate this topic in humans, we took advantage of neurophysiological finding revealing that retinal S-cones do not send projections to the collicular and magnocellular pathway. In the Experiment 1, subjects performed a simple reaction-time task in which they were required to respond as quickly as possible to any sensory stimulus (visual, auditory or bimodal audio-visual). The visual stimulus could be an S-cone stimulus (invisible to the collicular and magnocellular pathway) or a long wavelength stimulus (visible to the SC). Results showed that when using S-cone stimuli, RTs distribution was simply explained by probability summation, indicating that the redundant auditory and visual channels are independent. Conversely, with red long-wavelength stimuli, visible to the SC, the RTs distribution was related to nonlinear neural summation, which constitutes evidence of integration of different sensory information. We also demonstrate that when AV stimuli were presented at fixation, so that the spatial orienting component of the task was reduced, neural summation was possible regardless of stimulus color. Together, these findings provide support for a pivotal role of the SC in mediating multisensory spatial integration in humans, when behavior involves spatial orienting responses. Since previous studies have shown an anatomical asymmetry of fibres projecting to the SC from the hemiretinas, the Experiment 2 was aimed at investigating temporo-nasal asymmetry in multisensory integration. To do so, subjects performed monocularly the same task shown in the Experiment 1. When spatially coincident audio-visual stimuli were visible to the SC (i.e. red stimuli), the RTE depended on a neural coactivation mechanism, suggesting an integration of multisensory information. When using stimuli invisible to the SC (i.e. purple stimuli), the RTE depended only on a simple statistical facilitation effect, in which the two sensory stimuli were processed by independent channels. Finally, we demonstrate that the multisensory integration effect was stronger for stimuli presented to the temporal hemifield than to the nasal hemifield. Taken together, these findings suggested that multisensory stimulation can be differentially effective depending on specific stimulus parameters. The Experiment 3 was aimed at verifying the role of the SC in target selection by using a color-oddity search task, comprising stimuli either visible or invisible to the collicular and magnocellular pathways. Subjects were required to make a saccade toward a target that could be presented alone or with three distractors of another color (either S-cone or long-wavelength). When using S-cone distractors, invisible to the SC, localization errors were similar to those observed in the distractor-free condition. Conversely, with long-wavelength distractors, visible to the SC, saccadic localization error and variability were significantly greater than in either the distractor-free condition or the S-cone distractors condition. Our results clearly indicate that the SC plays a direct role in visual target selection in humans. Overall, our results indicate that the SC plays an important role in mediating spatial orienting responses both when required covert (Experiments 1 and 2) and overt orienting (Experiment 3).