5 resultados para 120202 Building Science and Techniques
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aims of this research were: - To identify the characteristics, properties and provenance of the building and decorative material found in three Hungarian Roman sites: Nagyharsány, Nemesvámos-Balácapuszta and Aquincum - To provide a database of information on the different sites - To have an overview of main conservation strategies applied in Hungary. Geological studies, macroscopical and microscopical observations, XRD investigations, physical and chemical analyses allowed us to define the characteristics and properties of the different kinds of collected materials. Building stones sampled from Nagyharsány site showed two different kinds of massive limestone belonging to the areas surrounding the villa. Also Building stones sampled from Nemesvámos-Balácapuszta Roman villa proved to be compatible with limestone belonging to local sources. Mural painting fragments show that all samples are units composed of multilayered structures. Mosaic tesserae can be classified as following: -Pale yellow , blackish and pink tesserae are comparable with local limestone; -White tessera, composed of marble, was probably imported from distant regions of the Empire, as the usual practice of Romans. Mortars present different characteristics according to the age, the site and the functions: -Building mortars are generally lime based, white or pale yellow in colour, present a high percentage of aggregates represented by fine sand; -Supporting mortars from both mosaics and mural paintings are reddish or pinkish in colour, due to the presence of high percentage of brick dust and tiles fragments, and present a higher content of MgO. Although the condition of the sites, there is an insignificant content of soluble salts. Database The whole study has allowed us to provide work sheets for each samples, including all characteristics and properties. Furthermore, all sites included in the frame of the research have been described and illustrated on the base of their floor plans, material and construction methodologies. It can be concluded that: 1. In Nagyharsány Archaeological site, it is possible to define a sequence of different construction phases on the base of the study of building material and mortars. The results are comparable with the chronology of the site provided by the archaeologists 2. The material used for construction was of local origin while the more precious ones, used for decorative elements, were probably imported from long distance 3. Construction techniques in Hungary mainly refer to the usual Roman knowledge and practice (Vitruvius); few differences have been found 4. The database will represent an archive for Archaeologists, Historians and Conservators dealing with Roman period in Hungary.
Resumo:
The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.
Resumo:
The general aim of this work is to contribute to the energy performance assessment of ventilated façades by the simultaneous use of experimental data and numerical simulations. A significant amount of experimental work was done on different types of ventilated façades with natural ventilation. The measurements were taken on a test building. The external walls of this tower are rainscreen ventilated façades. Ventilation grills are located at the top and at the bottom of the tower. In this work the modelling of the test building using a dynamic thermal simulation program (ESP-r) is presented and the main results discussed. In order to investigate the best summer thermal performance of rainscreen ventilated skin façade a study for different setups of rainscreen walls was made. In particular, influences of ventilation grills, air cavity thickness, skin colour, skin material, orientation of façade were investigated. It is shown that some types of rainscreen ventilated façade typologies are capable of lowering the cooling energy demand of a few percent points.
Resumo:
The times following international or civil conflicts but also violent revolutions often come with unequal share of the peace dividend for men and women. Delusions for women who gained freedom of movement and of roles during conflict but had to step back during reconstruction and peace have been recorded in all regions of the world. The emergence of peacebuilding as a modality for the international community to ensure peace and security has slowly incorporated gender sensitivity at the level of legal and policy instruments. Focusing on Rwanda, a country that has obtained significant gender advancement in the years after the genocide while also obtaining to not relapse into conflict, this research explores to what extent the international community has contributed to this transformation. From a review of evaluations, findings are that many of the interventions did not purse gender equality, and overall the majority understood gender and designed actions is a quite superficial way which would hardly account for the significative advancement in combating gender discrimination that the Government, for its inner political will, is conducting. Then, after a critique from a feminist standpoint to the concept of human security, departing from the assumption (sustained by the Governemnt of Rwanda as well) that domestic violence is a variable influencing level of security relevant at the national level, a review of available secondary data on GBV is conducted an trends over the years analysed. The emerging trends signal a steep increase in prevalence of GBV and in domestic violence in particular. Although no conclusive interpretation can be formulated on these data, there are elements suggesting the increase might be due to augmented reporting. The research concludes outlining possible further research pathways to better understand the link in Rwanda between the changing gender norms and the GBV.