24 resultados para 090602 Control Systems Robotics and Automation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
1° level of automation: the effectiveness of adaptive cruise control on driving and visual behaviour
Resumo:
The research activities have allowed the analysis of the driver assistance systems, called Advanced Driver Assistance Systems (ADAS) in relation to road safety. The study is structured according to several evaluation steps, related to definite on-site tests that have been carried out with different samples of users, according to their driving experience with the ACC. The evaluation steps concern: •The testing mode and the choice of suitable instrumentation to detect the driver’s behaviour in relation to the ACC. •The analysis modes and outputs to be obtained, i.e.: - Distribution of attention and inattention; - Mental workload; - The Perception-Reaction Time (PRT), the Time To Collision (TTC) and the Time Headway (TH). The main purpose is to assess the interaction between vehicle drivers and ADAS, highlighting the inattention and variation of the workloads they induce regarding the driving task. The research project considered the use of a system for monitoring visual behavior (ASL Mobile Eye-XG - ME), a powerful GPS that allowed to record the kinematic data of the vehicle (Racelogic Video V-BOX) and a tool for reading brain activity (Electroencephalographic System - EEG). Just during the analytical phase, a second and important research objective was born: the creation of a graphical interface that would allow exceeding the frame count limit, making faster and more effective the labeling of the driver’s points of view. The results show a complete and exhaustive picture of the vehicle-driver interaction. It has been possible to highlight the main sources of criticalities related to the user and the vehicle, in order to concretely reduce the accident rate. In addition, the use of mathematical-computational methodologies for the analysis of experimental data has allowed the optimization and verification of analytical processes with neural networks that have made an effective comparison between the manual and automatic methodology.
Resumo:
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood. The aim of this study was to identify molecular events involved in rhabdomyosarcoma onset for the development of new therapeutic approaches against specific molecular targets. BALB-p53neu mice develop pelvic rhabdomyosarcoma and combines the activation of HER-2/neu oncogene with the inactivation of an allele of p53 oncosuppressor gene. Gene expression profiling led to the identification of genes potentially involved in rhabdomyosarcoma genesis and therefore of candidate targets. The pattern of expression of p53, HER-2/neu, CDKN2A/p19ARF and IGF-2 suggested that these alterations might be involved in gender-, site- and strain-specific development of rhabdomyosarcoma. Other genes such as CDKN1A/p21 might be involved. The role of IGF-2, CDKN2A/p19ARF and CDKN1A/p21 in tumor growth was investigated with siRNA in murine rhabdomyosarcoma cells. Silencing of p19ARF and p21 induced inhibition of growth and of migration ability, indicating a possible pro-tumor and pro-metastatic role in rhabdomyosarcoma in absence of p53. In addition the autocrine IGF-2/IGF-1R loop found in early phases of cancer progression strengthens its key role in sustaining rhabdomyosarcoma growth. As rhabdomyosarcoma displays defective myogenic differentiation, a therapeutic approach aimed at enhancing myogenic differentiation of rhabdomyosarcoma cells. Forced expression of myogenin was able to restore myogenic differentiation, significantly reduced cell motility and impaired tumor growth and metastatic spread. IL-4 treatment increased rhabdomyosarcoma cell growth, decreased myogenin expression and promoted migration of cells lacking myogenin. Another approach was based on small kinase inhibitors. Agents specifically targeting members of the HER family (Lapatinib), of the IGF system (NVP-AEW541) or downstream signal transducers (NVP-BEZ235) were investigated in vitro in human rhabdomyosarcoma cell lines as therapeutic anti-tumor and anti-metastatic tools. The major effects were obtained with NVP-BEZ235 treatment that was able to strongly inhibit cell growth in vitro and showed anti-metastatic effects in vivo.
Resumo:
Constraints are widely present in the flight control problems: actuators saturations or flight envelope limitations are only some examples of that. The ability of Model Predictive Control (MPC) of dealing with the constraints joined with the increased computational power of modern calculators makes this approach attractive also for fast dynamics systems such as agile air vehicles. This PhD thesis presents the results, achieved at the Aerospace Engineering Department of the University of Bologna in collaboration with the Dutch National Aerospace Laboratories (NLR), concerning the development of a model predictive control system for small scale rotorcraft UAS. Several different predictive architectures have been evaluated and tested by means of simulation, as a result of this analysis the most promising one has been used to implement three different control systems: a Stability and Control Augmentation System, a trajectory tracking and a path following system. The systems have been compared with a corresponding baseline controller and showed several advantages in terms of performance, stability and robustness.
Resumo:
The thesis deals with the concept of presumptions, and in particular of legal presumptions, in the context of national tax systems (Italy and Belgium) and EU law. The purpose was to investigate the concept of legal presumption under a twofold comparative perspective. After having provided a general overview of the common core concept of presumption in the European context, an insight in the national approach to legal presumptions was given by examining two different national experiences, namely the Italian and Belgian tax systems. At this stage, the Constitutional framework and some of the most interesting and relevant at EU level presumptive measures were explored, with a view to underlining possible divergences and common grounds. The concept of (national) legal presumption was then investigated in the context of EU law, with the attempt to systematize under a uniform perspective a matter which has been traditionally dealt with either from the merely national point of view or, at EU level, through a fragmented form. In this instance, the EU law relevant framework and the most significant EUCJ case-law, in particular in the field of customs duties, VAT, on the issue of the repayment of taxes levied in breach of EU law and in the area of direct taxation, were examined so as to construe the overall EU approach to national legal presumptions. This was done with the finality of determining if and to what extent a common analytical framework may be identified, from which were extracted certain criteria governing the compatibility of national legal presumptions with EU law.
Resumo:
Starch is the main form in which plants store carbohydrates reserves, both in terms of amounts and distribution among different plant species. Carbohydrates are direct products of photosynthetic activity, and it is well know that yield efficiency and production are directly correlated to the amount of carbohydrates synthesized and how these are distributed among vegetative and reproductive organs. Nowadays, in pear trees, due to the modernization of orchards, through the introduction of new rootstocks and the development of new training systems, the understanding and the development of new approaches regarding the distribution and storage of carbohydrates, are required. The objective of this research work was to study the behavior of carbohydrate reserves, mainly starch, in different pear tree organs and tissues: i.e., fruits, leaves, woody organs, roots and flower buds, at different physiological stages during the season. Starch in fruit is accumulated at early stages, and reached a maximum concentration during the middle phase of fruit development; after that, its degradation begins with a rise in soluble carbohydrates. Moreover, relationships between fruit starch degradation and different fruit traits, soluble sugars and organic acids were established. In woody organs and roots, an interconversion between starch and soluble carbohydrates was observed during the dormancy period that confirms its main function in supporting the growth and development of new tissues during the following spring. Factors as training systems, rootstocks, types of bearing wood, and their position on the canopy, influenced the concentrations of starch and soluble carbohydrates at different sampling dates. Also, environmental conditions and cultural practices must be considered to better explain these results. Thus, a deeper understanding of the dynamics of carbohydrates reserves within the plant could provide relevant information to improve several management practices to increase crop yield efficiency.
Resumo:
This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.
Resumo:
This thesis argues the attitude control problem of nanosatellites, which has been a challenging issue over the years for the scientific community and still constitutes an active area of research. The interest is increasing as more than 70% of future satellite launches are nanosatellites. Therefore, new challenges appear with the miniaturisation of the subsystems and improvements must be reached. In this framework, the aim of this thesis is to develop novel control approaches for three-axis stabilisation of nanosatellites equipped with magnetorquers and reaction wheels, to improve the performance of the existent control strategies and demonstrate the stability of the system. In particular, this thesis is focused on the development of non-linear control techniques to stabilise full-actuated nanosatellites, and in the case of underactuation, in which the number of control variables is less than the degrees of freedom of the system. The main contributions are, for the first control strategy proposed, to demonstrate global asymptotic stability derived from control laws that stabilise the system in a target frame, a fixed direction of the orbit frame. Simulation results show good performance, also in presence of disturbances, and a theoretical selection of the magnetic control gain is given. The second control approach presents instead, a novel stable control methodology for three-axis stabilisation in underactuated conditions. The control scheme consists of the dynamical implementation of an attitude manoeuvre planning by means of a switching control logic. A detailed numerical analysis of the control law gains and the effect on the convergence time, total integrated and maximum torque is presented demonstrating the good performance and robustness also in the presence of disturbances.
Resumo:
The thesis work deals with topics that led to the development of innovative control-oriented models and control algorithms for modern gasoline engines. Knock in boosted spark ignition engines is the widest topic discussed in this document because it remains one of the most limiting factors for maximizing combustion efficiency in this kind of engine. First chapter is thus focused on knock and a wide literature review is proposed to summarize the preliminary knowledge that even represents the background and the reference for discussed activities. Most relevant results achieved during PhD course in the field of knock modelling and control are then presented, describing every control-oriented model that led to the development of an adaptive model-based combustion control system. The complete controller has been developed in the context of the collaboration with Ferrari GT and it allowed to completely redefine the knock intensity evaluation as well as the combustion phase control. The second chapter is focused on the activity related to a prototyping Port Water Injection system that has been developed and tested on a turbocharged spark ignition engine, within the collaboration with Magneti Marelli. Such system and the effects of injected water on the combustion process were then modeled in a 1-D simulation environment (GT Power). Third chapter shows the development and validation of a control-oriented model for the real-time calculation of exhaust gas temperature that represents another important limitation to the performance increase in modern boosted engines. Indeed, modelling of exhaust gas temperature and thermocouple behavior are themes that play a key role in the optimization of combustion and catalyst efficiency.
Resumo:
Sustainability encompasses the presence of three dimensions that must coexist simultaneously, namely the environmental, social, and economic ones. The economic and social dimensions are gaining the spotlight in recent years, especially within food systems. To assess social and economic impacts, indicators and tools play a fundamental role in contributing to the achievements of sustainability targets, although few of them have deepen the focus on social and economic impacts. Moreover, in a framework of citizen science and bottom-up approach for improving food systems, citizen play a key role in defying their priorities in terms of social and economic interventions. This research expands the knowledge of social and economic sustainability indicators within the food systems for robust policy insights and interventions. This work accomplishes the following objectives: 1) to define social and economic indicators within the supply chain with a stakeholder perspective, 2) to test social and economic sustainability indicators for future food systems engaging young generations. The first objective was accomplished through the development of a systematic literature review of 34 social sustainability tools, based on five food supply chain stages, namely production, processing, wholesale, retail, and consumer considering farmers, workers, consumers, and society as stakeholders. The second objective was achieved by defining and testing new food systems social and economic sustainability indicators through youth engagement for informed and robust policy insights, to provide policymakers suggestions that would incorporate young generations ones. Future food systems scenarios were evaluated by youth through focus groups, whose results were analyzed through NVivo and then through a survey with a wider platform. Conclusion addressed the main areas of policy interventions in terms of social and economic aspects of sustainable food systems youth pointed out as in need of interventions, spanning from food labelling reporting sustainable origins to better access to online food services.
Resumo:
Amid the trend of rising health expenditure in developed economies, changing the healthcare delivery models is an important point of action for service regulators to contain this trend. Such a change is mostly induced by either financial incentives or regulatory tools issued by the regulators and targeting service providers and patients. This creates a tripartite interaction between service regulators, professionals, and patients that manifests a multi-principal agent relationship, in which professionals are agents to two principals: regulators and patients. This thesis is concerned with such a multi-principal agent relationship in healthcare and attempts to investigate the determinants of the (non-)compliance to regulatory tools in light of this tripartite relationship. In addition, the thesis provides insights into the different institutional, economic, and regulatory settings, which govern the multi-principal agent relationship in healthcare in different countries. Furthermore, the thesis provides and empirically tests a conceptual framework of the possible determinants of (non-)compliance by physicians to regulatory tools issued by the regulator. The main findings of the thesis are first, in a multi-principal agent setting, the utilization of financial incentives to align the objectives of professionals and the regulator is important but not the only solution. This finding is based on the heterogeneity in the financial incentives provided to professionals in different health markets, which does not provide a one-size-fits-all model of financial incentives to influence clinical decisions. Second, soft law tools as clinical practice guidelines (CPGs) are important tools to mitigate the problems of the multi-principal agent setting in health markets as they reduce information asymmetries while preserving the autonomy of professionals. Third, CPGs are complex and heterogeneous and so are the determinants of (non-)compliance to them. Fourth, CPGs work but under conditions. Factors such as intra-professional competition between service providers or practitioners might lead to non-compliance to CPGs – if CPGs are likely to reduce the professional’s utility. Finally, different degrees of soft law mandate have different effects on providers’ compliance. Generally, the stronger the mandate, the stronger the compliance, however, even with a strong mandate, drivers such as intra-professional competition and co-management of patients by different professionals affected the (non-)compliance.
Resumo:
To change unadapted water governing systems, and water users’ traditional conducts in line with climate change, understanding of systems’ structures and users’ behaviors is necessary. To this aim, comprehensive and pragmatic research was designed and implemented in the Urmia Lake Basin where due to the severe droughts, and human-made influences, especially through the agricultural development, the lake has been shrunken drastically. To analyze the water governance and conservation issues in the basin, an innovative framework was developed based on mathematical physics concepts and pro-environmental behavior theories. Accordingly, in system level (macro/meso), the problem of fit of the early-shaped water governing system associating with the function of “political-security” and “political-economic” factors in the basin was identified through mean-field models. Furthermore, the effect of a “political-environmental” factor, the Urmia Lake Restoration Program (ULRP), on reforming the system structure and hence its fit was assessed. The analysis results revealed that by revising the provincial boundaries (horizontal alternation) for the entity of Kurdistan province to permit that interact with the headquarter of West Azerbaijan province for its water demand-supply initiatives, the system fit can increase. Also, the constitution of the ULRP (vertical arrangement) not only could increase the structural fit of the water governing system to the basin, but also significantly could enhance the system fit through its water-saving policy. Besides, in individual level (micro), the governing factors of water conservation behavior of the major users/farmers were identified through rational and moral socio-psychological models. In rational approach, incorporating PMT and TPB, the SEM results demonstrated that “Perceived Vulnerability”, “Self-Efficacy”, “Response Efficacy”, “Response Cost”, “Subjective Norms” and “Institutional Trust” significantly affect the water-saving intention/behavior. Likewise, NAM based analysis as a moral approach, uncovered the significant effects of “Awareness of Consequences”, “Appraisal of Responsibility”, “Personal Norms” as well as “Place Attachment” and “Emotions” on water-saving intention.
Resumo:
Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.
Resumo:
Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems.
Resumo:
In pursuit of aligning with the European Union's ambitious target of achieving a carbon-neutral economy by 2050, researchers, vehicle manufacturers, and original equipment manufacturers have been at the forefront of exploring cutting-edge technologies for internal combustion engines. The introduction of these technologies has significantly increased the effort required to calibrate the models implemented in the engine control units. Consequently the development of tools that reduce costs and the time required during the experimental phases, has become imperative. Additionally, to comply with ever-stricter limits on 〖"CO" 〗_"2" emissions, it is crucial to develop advanced control systems that enhance traditional engine management systems in order to reduce fuel consumption. Furthermore, the introduction of new homologation cycles, such as the real driving emissions cycle, compels manufacturers to bridge the gap between engine operation in laboratory tests and real-world conditions. Within this context, this thesis showcases the performance and cost benefits achievable through the implementation of an auto-adaptive closed-loop control system, leveraging in-cylinder pressure sensors in a heavy-duty diesel engine designed for mining applications. Additionally, the thesis explores the promising prospect of real-time self-adaptive machine learning models, particularly neural networks, to develop an automatic system, using in-cylinder pressure sensors for the precise calibration of the target combustion phase and optimal spark advance in a spark-ignition engines. To facilitate the application of these combustion process feedback-based algorithms in production applications, the thesis discusses the results obtained from the development of a cost-effective sensor for indirect cylinder pressure measurement. Finally, to ensure the quality control of the proposed affordable sensor, the thesis provides a comprehensive account of the design and validation process for a piezoelectric washer test system.