6 resultados para -thiol functionalized DO3A-N-(alfa-amido)propionate chelators

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main scope of this Ph.D. thesis has concerned the possible transformations of bridging ligands in diiron complexes, in order to explore unconventional routes to the synthesis of new functionalized multisite bound organic frames. The results achieved during the Ph.D. can be summarized in the following points: 1) We have extended the assembling between small unsaturated molecules and bridging carbyne ligands in diiron complexes to other species. In particular, we have investigated the coupling between olefins and thiocarbyne, leading to the synthesis of thioallylidene bridging diiron complexes. Then, we have extended the study to the coupling between olefins and aminocarbyne. This result shows that the coupling between activated olefins and heteroatom substituted bridging carbynes has a general character. 2) As we have shown, the coupling of bridging alkylidyne ligands with alkynes and alkenes provides excellent routes to the synthesis of bridging C3 hydrocarbyl ligands. As a possible extension of these results we have examined the synthesis of C4 bridging frames through the combination of bridging alkylidynes with allenes. Also in this case the reaction has a general character. 3) Diiron complexes bearing bridging functionalized C3 organic frames display the presence of donor atoms, such as N and S, potentially able to coordinate unsaturated metal fragments. Thus, we have studied the possibility for these systems to act as ‘organometallic ligands’, in particular towards Pd and Rh. 4) The possibility of releasing the organic frame from the bridging coordination appears particularly appealing in the direction of a metal-assisted organic synthesis. Within this field, we have investigated the possibility of involving the C3 bridging ligand in cycloaddition reactions with alkynes, with the aim of generating variously functionalized five-membered cycles. The [3+2] cyclization does not lead to the complete release of the organic fragment but rather it produces its transformation into a cyclopentadienyl ring, which remains coordinated to one Fe atom. This result introduces a new approach to the formation of polyfunctionalised ferrocenes. 5) Furthermore, I have spent a research period of about six months at the Department of Inorganic Chemistry of the Barcelona University, under the supervision of Prof. Concepción López, with the aim of studying the chemistry of polydentate ferrocenyl ligands and their use in organometallic synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il progetto di ricerca di questa tesi è stato focalizzato sulla sintesi di tre classi di molecole: β-lattami, Profeni e α-amminonitrili, utilizzando moderne tecniche di sintesi organica, metodologie ecosostenibili e strategie biocatalitiche. I profeni sono una categoria di antiinfiammatori molto diffusa e in particolare abbiamo sviluppato e ottimizzato una procedura in due step per ottenere (S)-Profeni da 2-arilpropanali raceme. Il primo step consiste in una bioriduzione delle aldeidi per dare i relativi (S)-2-Aril Propanoli tramite un processo DKR mediato dall’enzima Horse Liver Alcohol Dehydrogenase. Il secondo, l’ossidazione a (S)-Profeni, è promossa da NaClO2 e TEMPO come catalizzatore. Con lo scopo di migliorare il processo, in collaborazione con il gruppo di ricerca di Francesca Paradisi all’University College Dublino abbiamo immobilizzato l’enzima HLADH, ottenendo buone rese e una migliore enantioselettività. Abbiamo inoltre proposto un interessante approccio enzimatico per l’ossidazione degli (S)-2-Aril Propanoli utilizzando una laccasi da Trametes Versicolor. L’anello β-lattamico è un eterociclo molto importante, noto per essere un interessante farmacoforo. Abbiamo sintetizzato nuovi N-metiltio beta-lattami, che hanno mostrato un’attività antibatterica molto interessante contro ceppi resistenti di Staphilococcus Aureus prelevati da pazienti affetti da fibrosis cistica. Abbiamo poi coniugato gruppi polifenolici a questi nuovi β-lattami ottenendo molecule antiossidanti e antibatteriche, cioè con attività duale. Abbiamo poi sintetizzato un nuovo ibrido retinoide-betalattame che ha indotto differenziazione si cellule di neuroblastoma. Abbiamo poi sfruttato la reazione di aperture dell’anello monobattamico tramite enzimi idrolitici, con lo scopo di ottenere β-amminoacidi chirali desimmetrizzati come il monoestere dell’acido β–amminoglutammico. Per quando riguarda gli α-amminonitrili, è stato sviluppato un protocollo di Strecker. Le reazioni sono state molto efficienti utilizzando come fonte di cianuro l’acetone cianidrina in acqua, utilizzando differenti aldeidi e chetoni, ammine primarie e secondarie. Per mettere a punto una versione asimmetrica del protocollo, abbiamo usato ammine chirali con lo scopo di ottenere nuovi α-amminonitrili chirali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of luminescent metal complexes is a very challenging task since they can be regarded as the starting point for a lot of different areas. Luminescent complexes, in fact, can be used for technological, industrial, medical and biological applications. During my PhD I worked with different metals having distinguishing intrinsic properties that make them different from each other and, in particular, more or less suitable for the different possible uses. Iridium complexes show the best photophysical properties: they have high quantum yields, very long lifetimes and possess easily tunable emissions throughout the visible range. On the other hand, Iridium is very expensive and scarcely available. The aim of my work concerning this metal was, therefore, to synthesize ligands able not only to form luminescent complexes, but also able to add functionalities to the final complex, increasing its properties, and therefore its possible practical uses. Since Re(I) derivatives have been reported to be suitable as probes in biological system, and the use of Re(I) reduces the costs, the synthesized bifunctional ligands containing a pyridine-triazole and a biotin unit were employed to obtain new Re(I) luminescent probes. Part of my work involved the design and synthesis of new ligands able to form stable complexes with Eu(III) and Ce(III) salts, in order to obtain an emission in the range of visible light: these two metals are quite cheap and relatively non-toxic compared to other heavy metals. Finally, I plan to synthesize organic derivatives that already possessed an emission thanks to the presence of other many chromophoric groups and can be able to link the Zinc (II), a low cost and especially non-toxic “green” metal. Zinc has not its own emission, but when it sticks to ligands, it increases their photophysical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioconjugation of peptides and asymmetric synthesis of gem-difluoromethylene compounds are areas of the modern organic chemistry for which mild and selective methods continue to be developed. This thesis reports new methodologies for these two areas based on the use of stabilized carbenium ions. The reaction that makes the bioconjugation of peptides possible takes place via the direct nucleophilic substitution of alcohols and is driven by the spontaneous formation of stabilized carbenium ions in water. By reacting with the thiol group of cysteine in very mild conditions and with a high selectivity, these carbenium ions allow the site-specific ligation of polypeptides containing cysteine and their covalent derivatization with functionalized probes. The ligation of the indole ring of tryptophan, an emerging target in bioconjugation, is also shown and takes place in the same conditions. The second area investigated is the challenging access to optically active gem-difluoromethylene compounds. We describe a methodology relying on the synthesis of enantioenriched 1,3-benzodithioles intermediates that are shown to be precursors of the corresponding gem-difluoromethylene analogues by oxidative desulfurization-fluorination. This synthesis takes advantage of the highly enantioselective organocatalytic α-alkylation of aldehydes with the benzodithiolylium ion and of the wide possibilities of synthetic transformations offered by the 1,3-benzodithiole group. This approach allows the asymmetric access to complex gem-difluoromethylene compounds through a late-stage fluorination step, thus avoiding the use of fluorinated building blocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is focused on the development of a method for the synthesis of silicon nanocrystals with different sizes, narrow size distribution, good optical properties and stability in air. The resulting silicon nanocrystals have been covalently functionalized with different chromophores with the aim to exploit the new electronic and chemical properties that emerge from the interaction between silicon nanocrystal surface and ligands. The purpose is to use these chromophores as light harvesting antennae, increasing the optical absorption of silicon nanocrystals. Functionalized silicon nanocrystals have been characterized with different analytical techniques leading to a good knowledge of optical properties of semiconductor quantum dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable increase in average life expectancy and the consecutive increase in the number of cases of bone related diseases has led to a growing interest in the development of materials that can promote bone repair and/or replacement. Among the best candidates are those materials that have a high similarity to bones, in terms of composition, structure, morphology and functionality. Biomineralized tissue, and thus also bones, have three main components: water, an organic matrix and an inorganic deposit. In vertebrates, the inorganic deposit consists of what is called biological apatite, which slightly differ from stoichiometric hydroxyapatite (HA) both in crystallographic terms and in the presence of foreign atoms and species. This justifies the great attention towards calcium phosphates, which show excellent biocompatibility and bioactivity. The performances of the material and the response of the biological tissue can be further improved through their functionalization with ions, biologically active molecules and nanostructures. This thesis focuses on several possible functionalizations of calcium phosphates, and their effects on chemical properties and biological performances. In particular, the functionalizing agents include several biologically relevant ions, such as Cobalt (Co), Manganese (Mn), Strontium (Sr) and Zinc (Zn); two organic molecules, a flavonoid (Quercetin) and a polyphenol (Curcumin); and nanoparticles, namely tungsten oxide (WO3) NPs. Functionalization was carried out on various calcium phosphates: dicalcium phosphate dihydrate (DCPD), dicalcium phosphate anhydrous (DCPA) and hydroxyapatite (HA). Two different strategies of functionalization were applied: direct synthesis and adsorption from solution. Finally, a chapter is devoted to a preliminary study on the development of cements based on some of the functionalized phosphates obtained.