2 resultados para (D)-SEQUENCES

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four glycoproteins (gD, gB, gH, and gL) are required for herpes simplex virus (HSV) entry into the cell and for cell-cell fusion in transfected cells. gD serves as the receptor-binding glycoprotein and as the trigger of fusion; the other three glycoproteins execute fusion between the viral envelope and the plasma or endocytic membranes. Little is known on the interaction of gD with gB, gH, and gL. Here, the interactions between herpes simplex virus gD and its nectin1 receptor or between gD, gB, and gH were analyzed by complementation of the N and C portions of split enhanced green fluorescent protein (EGFP) fused to the glycoproteins. Split EGFP complementation was detected between proteins designated gDN + gHC, gDN + gBC, and gHN + gBC + wtgD, both in cells transfected with two or tree glycoproteins and in cells transfected with the four glycoproteins, commited to form syncytia. The in situ assay provides evidence that gD interacts with gH and gB independently one of the other. We further document the interaction between gH and gB. To elucidate which portions of the glycoproteins interact with each other we generated mutants of gD and gB. gD triggers fusion through a specialised domain, named pro-fusion domain (PFD), located C-terminally in the ectodomain. Here, we show that PFD is made of subdomains 1 and 2 (amino acids 260–285 and 285–310) and that each one partially contributed to herpes simplex virus infectivity. Chimeric gB molecules composed of HSV and human herpesvirus 8 (HHV8) sequences failed to reach the cell surface and to complement a gB defective virus. By means of pull down experiments we analyzed the interactions of HSV-HHV8 gB chimeras with gH or gD fused to the strep-tag. The gB sequence between aa residues 219-360 was identified as putative region of interaction with gH or critical to the interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study has been carried out with the following objectives: i) To investigate the attributes of source parameters of local and regional earthquakes; ii) To estimate, as accurately as possible, M0, fc, Δσ and their standard errors to infer their relationship with source size; iii) To quantify high-frequency earthquake ground motion and to study the source scaling. This work is based on observational data of micro, small and moderate -earthquakes for three selected seismic sequences, namely Parkfield (CA, USA), Maule (Chile) and Ferrara (Italy). For the Parkfield seismic sequence (CA), a data set of 757 (42 clusters) repeating micro-earthquakes (0 ≤ MW ≤ 2), collected using borehole High Resolution Seismic Network (HRSN), have been analyzed and interpreted. We used the coda methodology to compute spectral ratios to obtain accurate values of fc , Δσ, and M0 for three target clusters (San Francisco, Los Angeles, and Hawaii) of our data. We also performed a general regression on peak ground velocities to obtain reliable seismic spectra of all earthquakes. For the Maule seismic sequence, a data set of 172 aftershocks of the 2010 MW 8.8 earthquake (3.7 ≤ MW ≤ 6.2), recorded by more than 100 temporary broadband stations, have been analyzed and interpreted to quantify high-frequency earthquake ground motion in this subduction zone. We completely calibrated the excitation and attenuation of the ground motion in Central Chile. For the Ferrara sequence, we calculated moment tensor solutions for 20 events from MW 5.63 (the largest main event occurred on May 20 2012), down to MW 3.2 by a 1-D velocity model for the crust beneath the Pianura Padana, using all the geophysical and geological information available for the area. The PADANIA model allowed a numerical study on the characteristics of the ground motion in the thick sediments of the flood plain.