298 resultados para 550 Scienze della Terra
Resumo:
In this research work I analyzed the instrumental seismicity of Southern Italy in the area including the Lucanian Apennines and Bradano foredeep, making use of the most recent seismological database available so far. I examined the seismicity occurred during the period between 2001 and 2006, considering 514 events with magnitudes M ≥ 2.0. In the first part of the work, P- and S-wave arrival times, recorded by the Italian National Seismic Network (RSNC) operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV), were re-picked along with those of the SAPTEX temporary array (2001–2004). For some events located in the Upper Val d'Agri, I also used data from the Eni-Agip oil company seismic network. I computed the VP/VS ratio obtaining a value of 1.83 and I carried out an analysis for the one-dimensional (1D) velocity model that approximates the seismic structure of the study area. After this preliminary analysis, making use of the records obtained in the SeSCAL experiment, I incremented the database by handpicking new arrival times. My final dataset consists of 15,666 P- and 9228 S-arrival times associated to 1047 earthquakes with magnitude ML ≥ 1.5. I computed 162 fault-plane solutions and composite focal mechanisms for closely located events. I investigated stress field orientation inverting focal mechanism belonging to the Lucanian Apennine and the Pollino Range, both areas characterized by more concentrated background seismicity. Moreover, I applied the double difference technique (DD) to improve the earthquake locations. Considering these results and different datasets available in the literature, I carried out a detailed analysis of single sub-areas and of a swarm (November 2008) recorded by SeSCAL array. The relocated seismicity appears more concentrated within the upper crust and it is mostly clustered along the Lucanian Apennine chain. In particular, two well-defined clusters were located in the Potentino and in the Abriola-Pietrapertosa sector (central Lucanian region). Their hypocentral depths are slightly deeper than those observed beneath the chain. I suggest that these two seismic features are representative of the transition from the inner portion of the chain with NE-SW extension to the external margin characterized by dextral strike-slip kinematics. In the easternmost part of the study area, below the Bradano foredeep and the Apulia foreland, the seismicity is generally deeper and more scattered and is associated to the Murge uplift and to the small structures present in the area. I also observed a small structure NE-SW oriented in the Abriola-Pietrapertosa area (activated with a swarm in November 2008) that could be considered to act as a barrier to the propagation of a potential rupture of an active NW-SE striking faults system. Focal mechanisms computed in this study are in large part normal and strike-slip solutions and their tensional axes (T-axes) have a generalized NE-SW orientation. Thanks to denser coverage of seismic stations and the detailed analysis, this study is a further contribution to the comprehension of the seismogenesis and state of stress of the Southern Apennines region, giving important contributions to seismotectonic zoning and seismic hazard assessment.
Resumo:
We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.
Resumo:
The Southern Tyrrhenian subduction system shows a complex interaction among asthenospheric flow, subducting slab and overriding plate. To shed light on the deformations and mechanical properties of the slab and surrounding mantle, I investigated seismic anisotropy and attenuation properties through the subduction region. I used both teleseisms and slab earthquakes, analyzing shear-wave splitting on SKS and S phases, respectively. The fast polarization directions φ, and the delay time, δt, were retrieved using the method of Silver and Chan [1991. SKS and S φ reveal a complex anisotropy pattern across the subduction zone. SKS-rays sample primarily the sub-slab region showing rotation of fast directions following the curved shape of the slab and very strong anisotropy. S-rays sample mainly the slab, showing variable φ and a smaller δt. SKS and S splitting reveals a well developed toroidal flow at SW edge of the slab, while at its NE edge the pattern is not very clear. This suggests that the anisotropy is controlled by the slab rollback, responsible for about 100 km slab parallel φ in the sub-slab mantle. The slab is weakly anisotropic, suggesting the asthenosphere as main source of anisotropy. To investigate the physical properties of the slab and surrounding regions, I analyzed the seismic P and S wave attenuation. By inverting high-quality S-waves t* from slab earthquakes, 3D attenuation models down to 300 km were obtained. Attenuation results image the slab as low-attenuation body, but with heterogeneous QS and QP structure showing spot of high attenuation , between 100-200 km depth, which could be due dehydration associated to the slab metamorphism. A low QS anomaly is present in the mantle wedge beneath the Aeolian volcanic arc and could indicate mantle melting and slab dehydration.
Resumo:
Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.
Resumo:
The topic of my Ph.D. thesis is the finite element modeling of coseismic deformation imaged by DInSAR and GPS data. I developed a method to calculate synthetic Green functions with finite element models (FEMs) and then use linear inversion methods to determine the slip distribution on the fault plane. The method is applied to the 2009 L’Aquila Earthquake (Italy) and to the 2008 Wenchuan earthquake (China). I focus on the influence of rheological features of the earth's crust by implementing seismic tomographic data and the influence of topography by implementing Digital Elevation Models (DEM) layers on the FEMs. Results for the L’Aquila earthquake highlight the non-negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. Regarding the 2008 Wenchuan earthquake, the very steep topographic relief of Longmen Shan Range is implemented in my FE model. A large number of DEM layers corresponding to East China is used to achieve the complete coverage of the FE model. My objective was to explore the influence of the topography on the retrieved coseismic slip distribution. The inversion results reveals significant differences between the flat and topographic model. Thus, the flat models frequently adopted are inappropriate to represent the earth surface topographic features and especially in the case of the 2008 Wenchuan earthquake.
Resumo:
The aim of this thesis is to study how explosive behavior and geophysical signals in a volcanic conduit are related to the development of overpressure in slug-driven eruptions. A first suite of laboratory experiments of gas slugs ascending in analogue conduits was performed. Slugs ascended into a range of analogue liquids and conduit diameters to allow proper scaling to the natural volcanoes. The geometrical variation of the slug in response to the explored variables was parameterised. Volume of gas slug and rheology of the liquid phase revealed the key parameters in controlling slug overpressure at bursting. Founded on these results, a theoretical model to calculate burst overpressure for slug-driven eruptions was developed. The dimensionless approach adopted allowed to apply the model to predict bursting pressure of slugs at Stromboli. Comparison of predicted values with measured data from Stromboli volcano showed that the model can explain the entire spectrum of observed eruptive styles at Stromboli – from low-energy puffing, through normal Strombolian eruptions, up to paroxysmal explosions – as manifestations of a single underlying physical process. Finally, another suite of laboratory experiments was performed to observe oscillatory pressure and forces variations generated during the expansion and bursting of gas slugs ascending in a conduit. Two end-member boundary conditions were imposed at the base of the pipe, simulating slug ascent in closed base (zero magma flux) and open base (constant flux) conduit. At the top of the pipe, a range of boundary conditions that are relevant at a volcanic vent were imposed, going from open to plugged vent. The results obtained illustrate that a change in boundary conditions in the conduit concur to affect the dynamic of slug expansion and burst: an upward flux at the base of the conduit attenuates the magnitude of the pressure transients, while a rheological stiffening in the top-most region of conduit changes dramatically the magnitude of the observed pressure transients, favoring a sudden, and more energetic pressure release into the overlying atmosphere. Finally, a discussion on the implication of changing boundary on the oscillatory processes generated at the volcanic scale is also given.
Resumo:
I applied the SBAS-DInSAR method to the Mattinata Fault (MF) (Southern Italy) and to the Doruneh Fault System (DFS) (Central Iran). In the first case, I observed limited internal deformation and determined the right lateral kinematic pattern with a compressional pattern in the northern sector of the fault. Using the Okada model I inverted the observed velocities defining a right lateral strike slip solution for the MF. Even if it fits the data within the uncertainties, the modeled slip rate of 13-15 mm yr-1 seems too high with respect to the geological record. Concerning the Western termination of DFS, SAR data confirms the main left lateral transcurrent kinematics of this fault segment, but reveal a compressional component. My analytical model fits successfully the observed data and quantifies the slip in ~4 mm yr-1 and ~2.5 mm yr-1 of pure horizontal and vertical displacement respectively. The horizontal velocity is compatible with geological record. I applied classic SAR interferometry to the October–December 2008 Balochistan (Central Pakistan) seismic swarm; I discerned the different contributions of the three Mw > 5.7 earthquakes determining fault positions, lengths, widths, depths and slip distributions, constraining the other source parameters using different Global CMT solutions. A well constrained solution has been obtained for the 09/12/2008 aftershock, whereas I tested two possible fault solutions for the 28-29/10/08 mainshocks. It is not possible to favor one of the solutions without independent constraints derived from geological data. Finally I approached the study of the earthquake-cycle in transcurrent tectonic domains using analog modeling, with alimentary gelatins like crust analog material. I successfully joined the study of finite deformation with the earthquake cycle study and sudden dislocation. A lot of seismic cycles were reproduced in which a characteristic earthquake is recognizable in terms of displacement, coseismic velocity and recurrence time.
Resumo:
The primary objective of this thesis is to obtain a better understanding of the 3D velocity structure of the lithosphere in central Italy. To this end, I adopted the Spectral-Element Method to perform accurate numerical simulations of the complex wavefields generated by the 2009 Mw 6.3 L’Aquila event and by its foreshocks and aftershocks together with some additional events within our target region. For the mainshock, the source was represented by a finite fault and different models for central Italy, both 1D and 3D, were tested. Surface topography, attenuation and Moho discontinuity were also accounted for. Three-component synthetic waveforms were compared to the corresponding recorded data. The results of these analyses show that 3D models, including all the known structural heterogeneities in the region, are essential to accurately reproduce waveform propagation. They allow to capture features of the seismograms, mainly related to topography or to low wavespeed areas, and, combined with a finite fault model, result into a favorable match between data and synthetics for frequencies up to ~0.5 Hz. We also obtained peak ground velocity maps, that provide valuable information for seismic hazard assessment. The remaining differences between data and synthetics led us to take advantage of SEM combined with an adjoint method to iteratively improve the available 3D structure model for central Italy. A total of 63 events and 52 stations in the region were considered. We performed five iterations of the tomographic inversion, by calculating the misfit function gradient - necessary for the model update - from adjoint sensitivity kernels, constructed using only two simulations for each event. Our last updated model features a reduced traveltime misfit function and improved agreement between data and synthetics, although further iterations, as well as refined source solutions, are necessary to obtain a new reference 3D model for central Italy tomography.
Resumo:
The thesis contributed to the volcanic hazard assessment through the reconstruction of some historical flank eruptions of Etna in order to obtain quantitative data (volumes, effusion rates, etc.) for characterizing the recent effusive activity, quantifying the impact on the territory and defining mitigation actions for reducing the volcanic risk as for example containment barriers. The reconstruction was based on a quantitative approach using data extracted from aerial photographs and topographic maps. The approach allows to obtain the temporal evolution of the lava flow field and estimating the Time Average Discharge Rate (TADR) by dividing the volume emplaced over a given time interval for the corresponding duration. The analysis concerned the 2001, 1981 and 1928 Etna eruptions. The choice of these events is linked to their impact on inhabited areas. The results of the analysis showed an extraordinarily high effusion rate for the 1981 and 1928 eruptions (over 600 m^3/s), unusual for Etna eruptions. For the 1981 Etna eruption an eruptive model was proposed to explain the high discharge rate. The obtained TADRs were used as input data for simulations of the propagation of the lava flows for evaluating different scenarios of volcanic hazard and analyse different mitigation actions against lava flow invasion. It was experienced how numerical simulations could be adopted for evaluating the effectiveness of barrier construction and for supporting their optimal design. In particular, the gabions were proposed as an improvement for the construction of barriers with respect to the earthen barriers. The gabion barriers allow to create easily modular structures reducing the handled volumes and the intervention time. For evaluating operational constrain an experimental test was carried out to test the filling of the gabions with volcanic rock and evaluating their deformation during transport and placement.
Resumo:
The aim of this Thesis is to investigate the effect of heterogeneities within the subducting plate on the dynamics of subduction. In particular, I study the motion of the trench for oceanic and continental subduction, first, separately, and, then, together in the same system to understand how they interact. The understanding of these features is fundamental to reconstruct the evolution of complex subduction zones, such as the Central Mediterranean. For this purpose, I developed 2D and 3D numerical models of oceanic and continental subduction where the rheological, geometrical and compositional properties of the plates are varied. In these models, the trench and the overriding plate move self-consistently as a function of the dynamics of the system. The effect of continental subduction on trench migration is largely investigated. Results from a parametric study showed that despite different rheological properties of the plates, all models with a uniform continental crust share the same kinematic behaviour: the trench starts to advance once the continent arrives at the subduction zone. Hence, the advancing mode in continental collision scenarios is at least partly driven by an intrinsic feature of the system. Moreover, the presence of a weak lower crust within the continental plate can lead to the occurrence of delamination. Indeed, by changing the viscosity of the lower crust, both delamination and slab detachment can occur. Delamination is favoured by a low viscosity value of the lower crust, because this makes the mechanical decoupling easier between crust and lithospheric mantle. These features are observed both in 2D and 3D models, but the numerical results of the 3D models also showed that the rheology of the continental crust has a very strong effect on the dynamics of the whole system, since it influences not only the continental part of plate but also the oceanic sides.
Resumo:
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).
Resumo:
The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.
Resumo:
The main goals of this Ph.D. study are to investigate the regional and global geophysical components related to present polar ice melting and to provide independent cross validation checks of GIA models using both geophysical data detected by satellite mission, and geological observations from far field sites, in order to determine a lower and upper bound of uncertainty of GIA effect. The subject of this Thesis is the sea level change from decades to millennia scale. Within ice2sea collaboration, we developed a Fortran numerical code to analyze the local short-term sea level change and vertical deformation resulting from the loss of ice mass. This method is used to investigate polar regions: Greenland and Antarctica. We have used mass balance based on ICESat data for Greenland ice sheet and a plausible mass balance for Antarctic ice sheet. We have determined the regional and global fingerprint of sea level variations, vertical deformations of the solid surface of the Earth and variations of shape of the geoid for each ice source mentioned above. The coastal areas are affected by the long wavelength component of GIA process. Hence understanding the response of the Earth to loading is crucial in various contexts. Based on the hypothesis that Earth mantle materials obey to a linear rheology, and that the physical parameters of this rheology can be only characterized by their depth dependence, we investigate the Glacial Isostatic Effect upon the far field sites of Mediterranean area using an improved SELEN program. We presented new and revised observations for archaeological fish tanks located along the Tyrrhenian and Adriatic coast of Italy and new RSL for the SE Tunisia. Spatial and temporal variations of the Holocene sea levels studied in central Italy and Tunisia, provided important constraints on the melting history of the major ice sheets.