83 resultados para mobilité sectorielle
Resumo:
This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.
Resumo:
An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.
Resumo:
Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of global warming. Recently, several metropolitan cities introduced Zero-Emissions Zones where the use of the Internal Combustion Engine is forbidden to reduce localized pollutants emissions. This is particularly problematic for Plug-in Hybrid Electric Vehicles, which usually work in depleting mode. In order to address these issues, the present thesis presents a viable solution by exploiting vehicular connectivity to retrieve navigation data of the urban event along a selected route. The battery energy needed, in the form of a minimum State of Charge (SoC), is calculated by a Speed Profile Prediction algorithm and a Backward Vehicle Model. That value is then fed to both a Rule-Based Strategy, developed specifically for this application, and an Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). The effectiveness of this approach has been tested with a Connected Hardware-in-the-Loop (C-HiL) on a driving cycle measured on-road, stimulating the predictions with multiple re-routings. However, even if hybrid electric vehicles have been recognized as a valid solution in response to increasingly tight regulations, the reduced engine load and the repeated engine starts and stops may reduce substantially the temperature of the exhaust after-treatment system (EATS), leading to relevant issues related to pollutant emission control. In this context, electrically heated catalysts (EHCs) represent a promising solution to ensure high pollutant conversion efficiency without affecting engine efficiency and performance. This work aims at studying the advantages provided by the introduction of a predictive EHC control function for a light-duty Diesel plug-in hybrid electric vehicle (PHEV) equipped with a Euro 7-oriented EATS. Based on the knowledge of future driving scenarios provided by vehicular connectivity, engine first start can be predicted and therefore an EATS pre-heating phase can be planned.
Resumo:
Racing motorcycles are prone to an unstable oscillatory motion of the swingarm and rear wheel, commonly known as ‘chatter’. This vibration mode typically has a frequency of 17 Hz to 22 Hz and typically occurs during heavy braking manoeuvres. The appearance of chatter can cause reduced rider confidence, and therefore lead to longer lap times during races and the increased risk of crashing. This thesis looks to further the understanding of this mode. It includes the development of a simplified model to explore the effects roll angle and lateral dynamics have on the chatter mode using linear analysis. The mechanisms of instability and parameter sensitivities are also examined. The effects of the nonlinearities present in the minimal model equations of motion are examined, including the identification of limit cycles and their stability, inspecting individual nonlinear terms and their effects, and introducing tyre relaxation and determining the effect it has on the dynamics. Finally, an exploratory study of the mid-corner region of a typical racing manoeuvre is performed in hopes to better understand if any high frequency tyre induced instabilities like chatter can occur.
Resumo:
Nowadays, electrical machines are seeing an ever-increasing development and extensive research is currently being dedicated to the improvement of their efficiency and torque/power density. Compared to conventional random windings, hairpin winding inherently features lower DC resistance, higher fill factor, better thermal performance, improved reliability, and an automated manufacturing process. However, several challenges need to be addressed, including electromagnetic, thermal, and manufacturing aspects. Of these, the high ohmic losses at high-frequency operations due to skin and proximity effects are the most severe, resulting in low efficiency or high-temperature values. In this work, the hairpin winding challenges were highlighted at high-frequency operations and at showing the limits of applicability of these standard approaches. Afterward, a multi-objective design optimization is proposed aiming to enhance the exploitation of the hairpin technology in electrical machines. Efficiency and volume power density are considered as main design objectives. Subsequently, a changing paradigm is made for the design of electric motors equipped with hairpin windings, where it is proven that a temperature-oriented approach would be beneficial when designing this type of pre-formed winding. Furthermore, the effect of the rotor topology on AC losses is also considered. After providing design recommendations and FE electromagnetic and thermal evaluations, experimental tests are also performed for validation purposes on a motorette wound with pre-formed conductors. The results show that operating the machine at higher temperatures could be beneficial to efficiency, particularly in high-frequency operations where AC losses are higher at low operating temperatures. The last part of the thesis focuses on comparing the main electromagnetic performance metrics for a conventional hairpin winding, wound onto a benchmark stator with a semi-closed slot opening design, and a continuous hairpin winding, in which the slot opening is open. Lastly, the adoption of semi-magnetic slot wedges is investigated to improve the overall performance of the motor.
Resumo:
Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.
Resumo:
La tesi intende contribuire a livello teorico ed empirico al dibattito in tema di segregazione residenziale su base etnica. Negli ultimi anni, infatti, si stanno sviluppando studi e ricerche che mirano a (ri)definire la categoria di segregazione residenziale e le forme che essa può assumere a livello urbano (micro-segregazione, interstizio, segregazione verticale) proprio a partire dall’analisi delle caratteristiche del contesto Mediterraneo o dell’Europa del Sud. In questo quadro, il disegno di ricerca si articola a partire dal caso studio di Bologna e analizza la distribuzione residenziale della popolazione residente straniera in prospettiva diacronica, utilizzando strumenti di analisi georeferenziata e considerando diverse variabili (nazionalità, genere, status-socioeconomico). L’analisi quantitativa viene integrata da una seconda parte, che si compone di 20 interviste biografiche di tipo recall, che ricostruisce le traiettorie abitative di migranti residenti nella Città Metropolitana di Bologna, al fine di comprendere le modalità in cui le dinamiche strutturali che investono l’housing system si concretizzino nelle storie di vita di persone migranti. Dall’analisi emerge che la popolazione residente straniera è investita da un processo di periferizzazione che si manifesta a livello spaziale-territoriale e nei percorsi di vita. Adottandone una definizione estensiva, la categoria di periferizzazione individua una specifica forma di segregazione residenziale che non denota solo un processo di mobilità territoriale ma anche un più ampio e articolato “modo di abitare” di chi sta ai margini.
Resumo:
INTRODUZIONE - La presente ricerca è incentrata sul monitoraggio dell’efficacia dei progetti di Educazione Avventura con adolescenti difficili, in particolare del progetto “Lunghi cammini educativi”. A partire da un’analisi della letteratura sull’educazione esperienziale nature-based e in particolare sull’Adventure Education con adolescenti difficili, è stata progettata una rilevazione empirica attraverso cui sperimentare un metodo di monitoraggio finalizzato a cogliere la dimensione processuale (che nella ricerca nell’ambito resta spesso inesplorata, poiché sono maggiormente diffusi i metodi di monitoraggio cosiddetti “black-box”), utilizzando un sistema integrato di diverse tecniche di rilevazione. Le due principali domande che hanno guidato la ricerca sono state: 1.Quali processi educativi significativi si innescano e possono essere osservati durante l’esperienza? 2.Il metodo dell’intervista camminata, integrato ad altri metodi, è utile per individuare e monitorare questi processi? METODO - Collocandosi all’interno di un framework metodologico qualitativo (influenzato da riflessioni post-qualitative, paradigma delle mobilità e sguardo fenomenologico), la ricerca prende la forma di uno studio di caso singolo con due unità di analisi, e prevede la triangolazione di diversi metodi di raccolta dei dati: analisi documentale; osservazione partecipante nei cammini e nelle riunioni di équipe; interviste (prima, durante, dopo il cammino) con differenti tecniche: camminata, “image-elicited”, tradizionale, online. RISULTATI - L’analisi tematica abduttiva delle interviste e delle osservazioni conferma quanto già evidenziato dalla letteratura circa la centralità della dilatazione del campo d’esperienza e del lavoro su alcune life skills (in particolare, competenze personali e growth mindset). Emergono anche alcuni key findings inattesi: il notevole “peso” dello stile educativo dell’accompagnatore; la “scoperta” del ruolo della quotidianità all’interno dell’esperienza straordinaria; la necessità di consapevolezza riguardo al potenziale educativo dell’ambiente (naturale e/o antropizzato), per una maggiore intenzionalità nelle scelte strategiche di cammino. L’intervista camminata, nonostante alcuni limiti, si conferma come metodo effettivamente utile a cogliere la dimensione processuale, e coerente con il contesto indagato.
Resumo:
The ambitious goals of increasing the efficiency, performance and power densities of transportation drives cannot be met with compromises in the motor reliability. For the insulation specialists the challenge will be critical as the use of wide-bandgap converters (WBG, based on SiC and GaN switches) and the higher operating voltages expected for the next generation drives will enhance the electrical stresses to unprecedented levels. It is expected for the DC bus in aircrafts to reach 800 V (split +/-400 V) and beyond, driven by the urban air mobility sector and the need for electrification of electro-mechanical/electro-hydraulic actuators (an essential part of the "More Electric Aircraft" concept). Simultaneously the DC bus in electric vehicles (EV) traction motors is anticipated to increase up to 1200 V very soon. The electrical insulation system is one of the most delicate part of the machine in terms of failure probability. In particular, the appearance of partial discharges (PD) is disruptive on the reliability of the drive, especially under fast repetitive transients. Extensive experimental activity has been performed to extend the body of knowledge on PD inception, endurance under PD activity, and explore and identify new phenomena undermining the reliability. The focus has been concentrated on the impact of the WGB-converter produced waveforms and the environmental conditions typical of the aeronautical sector on insulation models. Particular effort was put in the analysis at the reduced pressures typical of aircraft cruise altitude operation. The results obtained, after a critical discussion, have been used to suggest a coordination between the insulation PD inception voltage with the converter stresses and to propose an improved qualification procedure based on the existing IEC 60034-18-41 standard.
Resumo:
This PhD dissertation envisages the design of innovative power converters exploiting WBG devices to get state-of-the-art performance in products intended for industrial applications of automotive field. The collaborations with different specialized companies, provided the opportunity to access commercially-available state-of-the-art SiC and GaN technologies and the possibility to realize innovative converter prototypes. Concerning SiC technology, the complete design of a $350kW$ Battery Emulator instrument in collaboration with a company leader in the automotive testing sector, was carried out from scratch exploiting state-of-the-art SiC power-modules, planar magnetics and top-notch MCU technologies. Discrete high-voltage GaN switches were exploited in the Power Supplies design for automotive charger application to target improved performances compared to the market state-of-the-art. Specifically, two high-efficiency prototypes, an AC/DC converter and a DC/DC converter of $7.5kW$, have been realized for this purpose. To further investigate the characteristics of state-of-the-art GaN power devices two measurement set-ups have been designed. In particular, the trapping phenomenon causing the collapse of drain current during ON-state with a consequent degradation of ON-resistance has been analyzed.
Resumo:
This Thesis studies the optimal control problem of single-arm and dual-arm serial robots to achieve the time-optimal handling of liquids and objects. The first topic deals with the planning of time-optimal anti-sloshing trajectories of an industrial robot carrying a cylindrical container filled with a liquid, considering 1-dimensional and 2-dimensional planar motions. A technique for the estimation of the sloshing height is presented, together with its extension to 3-dimensional motions. An experimental validation campaign is provided and discussed to assess the thoroughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-dimensional paths are considered and, for each one of them, three constrained optimizations with different values of the sloshing-height thresholds are solved. Experimental results are presented to compare optimized and non-optimized motions. The second part focuses on the time-optimal trajectory planning for dual-arm object handling, employing two collaborative robots (cobots) and adopting an admittance-control strategy. The chosen manipulation approach, known as cooperative grasping, is based on unilateral contact between the cobots and the object, and it may lead to slipping during motion if an internal prestress along the contact-normal direction is not prescribed. Thus, a virtual penetration is considered, aimed at generating the necessary internal prestress. The stability of cooperative grasping is ensured as long as the exerted forces on the object remain inside the static-friction cone. Constrained-optimization problems are solved for 3-dimensional paths: the virtual penetration is chosen among the control inputs of the problem and friction-cone conditions are treated as inequality constraints. Also in this case experiments are presented in order to prove evidence of the firm handling of the object, even for fast motions.
Resumo:
Sound radiators based on forced vibrations of plates are becoming widely employed, mainly for active sound enhancement and noise cancelling systems, both in music and automotive environment. Active sound enhancement solutions based on electromagnetic shakers hence find increasing interest. Mostly diffused applications deal with active noise control (ANC) and active vibration control systems for improving the acoustic experience inside or outside the vehicle. This requires investigating vibrational and, consequently, vibro-acoustic characteristics of vehicles. Therefore, simulation and processing methods capable of reducing the calculation time and providing high-accuracy results, are strongly demanded. In this work, an ideal case study on rectangular plates in fully clamped conditions preceded a real case analysis on vehicle panels. The sound radiation generated by a vibrating flat or shallow surface can be calculated by means of Rayleigh’s integral. The analytical solution of the problem is here calculated implementing the equations in MATLAB. Then, the results are compared with a numerical model developed in COMSOL Multiphysics, employing Finite Element Method (FEM). A very good matching between analytical and numerical solutions is shown, thus the cross validation of the two methods is achieved. The shift to the real case study, on a McLaren super car, led to the development of a mixed analytical-numerical method. Optimum results were obtained with mini shakers excitement, showing good matching of the recorded SPL with the calculated one over all the selected frequency band. In addition, a set of directivity measurements of the hood were realized, to start studying the spatiality of sound, which is fundamental to active noise control systems.
Resumo:
The current environmental crisis is forcing the automotive industry to face tough challenges for the Internal Combustion Engines development in order to reduce the emissions of pollutants and Greenhouse gases. In this context, in the last decades, the main technological solutions adopted by the manufacturers have been the direct injection and the engine downsizing, which led to the rising of new concerns related to the fuel-cylinder walls physical interaction. The fuel spray possibly impacts the cylinder liner wall, which is wetted by the lubricant oil thus causing the derating of the lubricant properties, increasing the oil consumption, and contaminating the lubricant oil in the crankcase. Also, concerning hydrogen fuelled internal combustion engines, it is likely that the high near-wall temperature, which is typical of the hydrogen flame, results in the evaporation of a portion of the lubricant oil, increasing its consumption. With regards on the innovative combustion systems and their control strategies, optical accessible engines are fundamental tools for experimental investigations on such combustion systems. Though, due to the optical measurement line, optical engines suffer from a high level of blow-by, which must be accounted for. In light of the above, this thesis work aims to develop numerical methodologies with the aim to build useful tools for supporting the design of modern engines. In particular, a one-dimensional modelling of the lubricant oil-fuel dilution and oil evaporation has been performed and coupled with an optimization algorithm to achieve a lubricant oil surrogate. Then, a quasi-dimensional blow-by model has been developed and validated against experimental data. Such model, has been coupled with CFD 3D simulations and directly implemented in CFD 3D. Finally, CFD 3D simulations coupled with the VOF method have been performed in order to validate a methodology for studying the impact of a liquid droplet on a solid surface.
Resumo:
The project aims to gather an understanding of additive manufacturing and other manufacturing 4.0 techniques with an eyesight for industrialization. First the internal material anisotropy of elements created with the most economically feasible FEM technique was established. An understanding of the main drivers for variability for AM was portrayed, with the focus on achieving material internal isotropy. Subsequently, a technique for deposition parameter optimization was presented, further procedure testing was performed following other polymeric materials and composites. A replicability assessment by means of the use of technology 4.0 was proposed, and subsequent industry findings gathered the ultimate need of developing a process that demonstrate how to re-engineer designs in order to show the best results with AM processing. The latest study aims to apply the Industrial Design and Structure Method (IDES) and applying all the knowledge previously stacked into fully reengineer a product with focus of applying tools from 4.0 era, from product feasibility studies, until CAE – FEM analysis and CAM – DfAM. These results would help in making AM and FDM processes a viable option to be combined with composites technologies to achieve a reliable, cost-effective manufacturing method that could also be used for mass market, industry applications.
Resumo:
In recent years, vehicle acoustics have gained significant importance in new car development: increasingly advanced infotainment systems for spatial audio and sound enhancement algorithms have become the norm in modern vehicles. In the past, car manufacturers had to build numerous prototypes to study the sound behaviour inside the car cabin or the effect of new algorithms under development. Nowadays, advanced simulation techniques can reduce development costs and time. In this work, after selecting the reference test vehicle, a modern luxury sedan equipped with a high-end sound system, two independent tools were developed: a simulation tool created in the Comsol Multiphysics environment and an auralization tool developed in the Cycling ‘74 MAX environment. The simulation tool can calculate the impulse response and acoustic spectrum at a specific position inside the cockpit. Its input data are the vehicle’s geometry, acoustic absorption parameters of materials, the acoustic characteristics and position of loudspeakers, and the type and position of virtual microphones (or microphone arrays). The simulation tool can also provide binaural impulse responses thanks to Head Related Transfer Functions (HRTFs) and an innovative algorithm able to compute the HRTF at any distance and angle from the head. Impulse responses from simulations or acoustic measurements inside the car cabin are processed and fed into the auralization tool, enabling real-time interaction by applying filters, changing the channels gain or displaying the acoustic spectrum. Since the acoustic simulation of a vehicle involves multiple topics, the focus of this work has not only been the development of two tools but also the study and application of new techniques for acoustic characterization of the materials that compose the cockpit and the loudspeaker simulation. Specifically, three different methods have been applied for material characterization through the use of a pressure-velocity probe, a Laser Doppler Vibrometer (LDV), and a microphone array.