82 resultados para Perturbação (Astronomia)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis two related arguments are investigated: - The first stages of the process of massive star formation, investigating the physical conditions and -properties of massive clumps in different evolutionary stages, and their CO depletion; - The influence that high-mass stars have on the nearby material and on the activity of star formation. I characterise the gas and dust temperature, mass and density of a sample of massive clumps, and analyse the variation of these properties from quiescent clumps, without any sign of active star formation, to clumps likely hosting a zero-age main sequence star. I briefly discuss CO depletion and recent observations of several molecular species, tracers of Hot Cores and/or shocked gas, of a subsample of these clumps. The issue of CO depletion is addressed in more detail in a larger sample consisting of the brightest sources in the ATLASGAL survey: using a radiative tranfer code I investigate how the depletion changes from dark clouds to more evolved objects, and compare its evolution to what happens in the low-mass regime. Finally, I derive the physical properties of the molecular gas in the photon-dominated region adjacent to the HII region G353.2+0.9 in the vicinity of Pismis 24, a young, massive cluster, containing some of the most massive and hottest stars known in our Galaxy. I derive the IMF of the cluster and study the star formation activity in its surroundings. Much of the data analysis is done with a Bayesian approach. Therefore, a separate chapter is dedicated to the concepts of Bayesian statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Millisecond Pulsars (MSPs) are fast rotating, highly magnetized neutron stars. According to the "canonical recycling scenario", MSPs form in binary systems containing a neutron star which is spun up through mass accretion from the evolving companion. Therefore, the final stage consists of a binary made of a MSP and the core of the deeply peeled companion. In the last years, however an increasing number of systems deviating from these expectations has been discovered, thus strongly indicating that our understanding of MSPs is far to be complete. The identification of the optical companions to binary MSPs is crucial to constrain the formation and evolution of these objects. In dense environments such as Globular Clusters (GCs), it also allows us to get insights on the cluster internal dynamics. By using deep photometric data, acquired both from space and ground-based telescopes, we identified 5 new companions to MSPs. Three of them being located in GCs and two in the Galactic Field. The three new identifications in GCs increased by 50% the number of such objects known before this Thesis. They all are non-degenerate stars, at odds with the expectations of the "canonical recycling scenario". These results therefore suggest either that transitory phases should also be taken into account, or that dynamical processes, as exchange interactions, play a crucial role in the evolution of MSPs. We also performed a spectroscopic follow-up of the companion to PSRJ1740-5340A in the GC NGC 6397, confirming that it is a deeply peeled star descending from a ~0.8Msun progenitor. This nicely confirms the theoretical expectations about the formation and evolution of MSPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The open clusters (OC) are gravitationally bound systems of a few tens or hundreds of stars. In our Galaxy, the Milky Way, we know about 3000 open clusters, of very different ages in the range of a few millions years to about 9 Gyr. OCs are mainly located in the Galactic thin disc, with distances from the Galactic centre in the range 4-22 kpc and a height scale on the disc of about 200 pc. Their chemical properties trace those of the environment in which they formed and the metallicity is in the range -0.5<[Fe/H]<+0.5 dex. Through photometry and spectroscopy it is possible to study relatively easily the properties of the OCs and estimate their age, distance, and chemistry. For these reasons they are considered primary tracers of the chemical properties and chemical evolution of the Galactic disc. The main subject of this thesis is the comprehensive study of several OCs. The research embraces two different projects: the Bologna Open Cluster Chemical Evolution project (BOCCE) and the Gaia-ESO Survey. The first is a long-term programme, aiming at studying the chemical evolution of the Milky Way disc by means of a homogeneous sample of OCs. The latter is a large public spectroscopy survey, conducted with the high-resolution spectrograph FLAMES@VLT and targeting about 10^5 stars in different part of the Galaxy and 10^4 stars in about 100 OCs. The common ground between the two projects is the study of the properties of the OCs as tracers of the disc's characteristics. The impressive scientific outcome of the Gaia-ESO Survey and the unique framework of homogeneity of the BOCCE project can propose, especially once combined together, a much more accurate description of the properties of the OCs. In turn, this will give fundamental constraints for the interpretation of the properties of the Galactic disc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of the Cosmic Microwave Background (CMB) radiation in 1965 is one of the fundamental milestones supporting the Big Bang theory. The CMB is one of the most important source of information in cosmology. The excellent accuracy of the recent CMB data of WMAP and Planck satellites confirmed the validity of the standard cosmological model and set a new challenge for the data analysis processes and their interpretation. In this thesis we deal with several aspects and useful tools of the data analysis. We focus on their optimization in order to have a complete exploitation of the Planck data and contribute to the final published results. The issues investigated are: the change of coordinates of CMB maps using the HEALPix package, the problem of the aliasing effect in the generation of low resolution maps, the comparison of the Angular Power Spectrum (APS) extraction performances of the optimal QML method, implemented in the code called BolPol, and the pseudo-Cl method, implemented in Cromaster. The QML method has been then applied to the Planck data at large angular scales to extract the CMB APS. The same method has been applied also to analyze the TT parity and the Low Variance anomalies in the Planck maps, showing a consistent deviation from the standard cosmological model, the possible origins for this results have been discussed. The Cromaster code instead has been applied to the 408 MHz and 1.42 GHz surveys focusing on the analysis of the APS of selected regions of the synchrotron emission. The new generation of CMB experiments will be dedicated to polarization measurements, for which are necessary high accuracy devices for separating the polarizations. Here a new technology, called Photonic Crystals, is exploited to develop a new polarization splitter device and its performances are compared to the devices used nowadays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diameters of traditional dish concentrators can reach several tens of meters, the construction of monolithic mirrors being difficult at these scales: cheap flat reflecting facets mounted on a common frame generally reproduce a paraboloidal surface. When a standard imaging mirror is coupled with a PV dense array, problems arise since the solar image focused is intrinsically circular. Moreover, the corresponding irradiance distribution is bell-shaped in contrast with the requirement of having all the cells under the same illumination. Mismatch losses occur when interconnected cells experience different conditions, in particular in series connections. In this PhD Thesis, we aim at solving these issues by a multidisciplinary approach, exploiting optical concepts and applications developed specifically for astronomical use, where the improvement of the image quality is a very important issue. The strategy we propose is to boost the spot uniformity acting uniquely on the primary reflector and avoiding the big mirrors segmentation into numerous smaller elements that need to be accurately mounted and aligned. In the proposed method, the shape of the mirrors is analytically described by the Zernike polynomials and its optimization is numerically obtained to give a non-imaging optics able to produce a quasi-square spot, spatially uniform and with prescribed concentration level. The freeform primary optics leads to a substantial gain in efficiency without secondary optics. Simple electrical schemes for the receiver are also required. The concept has been investigated theoretically modeling an example of CPV dense array application, including the development of non-optical aspects as the design of the detector and of the supporting mechanics. For the method proposed and the specific CPV system described, a patent application has been filed in Italy with the number TO2014A000016. The patent has been developed thanks to the collaboration between the University of Bologna and INAF (National Institute for Astrophysics).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have realized a Data Acquisition chain for the use and characterization of APSEL4D, a 32 x 128 Monolithic Active Pixel Sensor, developed as a prototype for frontier experiments in high energy particle physics. In particular a transition board was realized for the conversion between the chip and the FPGA voltage levels and for the signal quality enhancing. A Xilinx Spartan-3 FPGA was used for real time data processing, for the chip control and the communication with a Personal Computer through a 2.0 USB port. For this purpose a firmware code, developed in VHDL language, was written. Finally a Graphical User Interface for the online system monitoring, hit display and chip control, based on windows and widgets, was realized developing a C++ code and using Qt and Qwt dedicated libraries. APSEL4D and the full acquisition chain were characterized for the first time with the electron beam of the transmission electron microscope and with 55Fe and 90Sr radioactive sources. In addition, a beam test was performed at the T9 station of the CERN PS, where hadrons of momentum of 12 GeV/c are available. The very high time resolution of APSEL4D (up to 2.5 Mfps, but used at 6 kfps) was fundamental in realizing a single electron Young experiment using nanometric double slits obtained by a FIB technique. On high statistical samples, it was possible to observe the interference and diffractions of single isolated electrons traveling inside a transmission electron microscope. For the first time, the information on the distribution of the arrival time of the single electrons has been extracted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Redshift Space Distortions (RSD) are an apparent anisotropy in the distribution of galaxies due to their peculiar motion. These features are imprinted in the correlation function of galaxies, which describes how these structures distribute around each other. RSD can be represented by a distortions parameter $\beta$, which is strictly related to the growth of cosmic structures. For this reason, measurements of RSD can be exploited to give constraints on the cosmological parameters, such us for example the neutrino mass. Neutrinos are neutral subatomic particles that come with three flavours, the electron, the muon and the tau neutrino. Their mass differences can be measured in the oscillation experiments. Information on the absolute scale of neutrino mass can come from cosmology, since neutrinos leave a characteristic imprint on the large scale structure of the universe. The aim of this thesis is to provide constraints on the accuracy with which neutrino mass can be estimated when expoiting measurements of RSD. In particular we want to describe how the error on the neutrino mass estimate depends on three fundamental parameters of a galaxy redshift survey: the density of the catalogue, the bias of the sample considered and the volume observed. In doing this we make use of the BASICC Simulation from which we extract a series of dark matter halo catalogues, characterized by different value of bias, density and volume. This mock data are analysed via a Markov Chain Monte Carlo procedure, in order to estimate the neutrino mass fraction, using the software package CosmoMC, which has been conveniently modified. In this way we are able to extract a fitting formula describing our measurements, which can be used to forecast the precision reachable in future surveys like Euclid, using this kind of observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I have investigated the evolution of the high-redshift (z > 3) AGN population by collecting data from some of the major Chandra and XMM-Newton surveys. The final sample (141 sources) is one of the largest selected at z> 3 in the X- rays and it is characterised by a very high redshift completeness (98%). I derived the spectral slopes and obscurations through a spectral anaysis and I assessed the high-z evolution by deriving the luminosity function and the number counts of the sample. The best representation of the AGN evolution is a pure density evolution (PDE) model: the AGN space density is found to decrease by a factor of 10 from z=3 to z=5. I also found that about 50% of AGN are obscured by large column densities (logNH > 23). By comparing these data with those in the Local Universe, I found a positive evolution of the obscured AGN fraction with redshift, especially for luminous (logLx > 44) AGN. I also studied the gas content of z < 1 AGN-hosting galaxies and compared it with that of inactive galaxies. For the first time, I applied to AGN a method to derive the gas mass previously used for inactive galaxies only. AGN are found to live preferentially in gas-rich galaxies. This result on the one hand can help us in understanding the AGN triggering mechanisms, on the other hand explains why AGN are preferentially hosted by star-forming galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work I present the first measurements of the galaxy stellar mass function (GSMF) from the first public release of the VIPERS catalogue, containing ∼55,000 objects. First, I present the survey design, its scientific goal, the redshift measurements and validation. Then, I provide details about the estimate of galaxy stellar masses, star formation rates, and other physical quantities. I derive the GSMF of different galaxy types (e.g. active and passive galaxies) and as a function of the environment (defined through the local galaxy density contrast). These estimates represent new observational evidence useful to characterise the mechanism of galaxy evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation and evolution of galaxy bulges is a greatly debated topic in modern astrophysics. An approach to address this issue is to look at the Galactic bulge, the closest to us. According to some theoretical models, our bulge built-up from the merger of substructures formed from the instability and fragmentation of a proto-disk in the early phases of Galactic evolution. We may have discovered the remnant of one of these substructures: the stellar system Terzan 5. Terzan 5 hosts two stellar populations with different iron abundances, thus suggesting it once was far more massive than today. Moreover, its peculiar chemistry resembles that observed only in the Galactic bulge. In this Thesis we perform a detailed photometric and spectroscopic analysis of this cluster to determine its formation and evolutionary histories. Form the photometric point of view we built a high-resolution differential reddening map in Terzan 5 direction and we measured relative proper motions to separate its member population from the contaminating field stars. This information represents the necessary work to measure the absolute ages of Terzan 5 populations via the Turn-off luminosity method. From the spectroscopic point of view we measured abundances for more than 600 stars belonging to Terzan 5 and its surroundings in order to build the largest field-decontaminated metallicity distribution for this system. We find that the metallicity distribution is extremely wide (more than 1 dex) and we discovered a third, metal-poor and alpha-enhanced population with average [Fe/H]=-0.8. The striking similarity between Terzan 5 and the bulge in terms of their chemical formation and evolution revealed by this Thesis suggests that Terzan 5 formed in situ with the bulge itself. In particular its metal-poor populations trace the early stages of the bulge formation, while its most metal-rich component contains crucial information on the bulge more recent evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamical models of galaxies are a powerful tool to study and understand several astrophysical problems related to galaxy formation and evolution. This thesis is focussed on a particular type of dynamical models, that are widely used in literature, and are based on the solution of the Jeans equations. By means of a numerical Jeans solver code, developed on purpose and able to build state-of-the-art advanced axisymmetric galaxy models, two of the main currently investigated issues in the field of research of early-type galaxies (ETGs) are addressed. The first topic concerns the hot and X-ray emitting gaseous coronae that surround ETGs. The main goal is to explain why flat and rotating galaxies generally exhibit haloes with lower gas temperatures and luminosities with respect to rounder and velocity dispersion supported systems. The second astrophysical problem addressed concerns instead the stellar initial mass function (IMF) of ETGs. Nowadays, this is a very controversial issue due to a growing number of works on ETGs, based on different and independent techniques, that show evidences of a systematic variation of the IMF normalization as a function of galaxy velocity dispersion or mass. These studies are changing the previous opinion that the IMF of ETGs was the same as that of spiral galaxies, and hence universal throughout the whole large family of galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Large Magellanic Cloud (LMC) is widely considered as the first step of the cosmological distance ladder, since it contains many different distance indicators. An accurate determination of the distance to the LMC allows one to calibrate these distance indicators that are then used to measure the distance to far objects. The main goal of this thesis is to study the distance and structure of the LMC, as traced by different distance indicators. For these purposes three types of distance indicators were chosen: Classical Cepheids,``hot'' eclipsing binaries and RR Lyrae stars. These objects belong to different stellar populations tracing, in turn, different sub-structures of the LMC. The RR Lyrae stars (age >10 Gyr) are distributed smoothly and likely trace the halo of the LMC. Classical Cepheids are young objects (age 50-200 Myr), mainly located in the bar and spiral arm of the galaxy, while ``hot'' eclipsing binaries mainly trace the star forming regions of the LMC. Furthermore, we have chosen these distance indicators for our study, since the calibration of their zero-points is based on fundamental geometric methods. The ESA cornerstone mission Gaia, launched on 19 December 2013, will measure trigonometric parallaxes for one billion stars with an accuracy of 20 micro-arcsec at V=15 mag, and 200 micro-arcsec at V=20 mag, thus will allow us to calibrate the zero-points of Classical Cepheids, eclipsing binaries and RR Lyrae stars with an unprecedented precision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Thesis, we study the physical properties and the cosmic evolution of AGN and their host galaxies since z∼3. Our analysis exploits samples of star forming galaxies detected with Herschel at far-IR wavelengths (from 70 up to 500 micron) in different extragalactic surveys, such as COSMOS and the deep GOODS (South and North) fields. The broad-band ancillary data available in COSMOS and the GOODS fields, allows us to implement Herschel and Spitzer photometry with multi-wavelength ancillary data. We perform a multicomponent SED-fitting decomposition to decouple the emission due to star formation from that due to AGN accretion, and to estimate both host-galaxy parameters (such as stellar mass, M* and star formation rate, SFR), and nuclear intrinsic bolometric luminosities. We use the individual estimates of AGN bolometric luminosity obtained through SED-fitting decomposition to reconstruct the redshit evolution of the AGN bolometric luminosity function since z∼3. The resulting trends are used to estimate the overall AGN accretion rate density at different cosmic epochs and to trace the first ever estimate of the AGN accretion history from an IR survey. Later on, we focus our study on the connection between AGN accretion and integrated galaxy properties. We analyse the relationships of AGN accretion with galaxy properties in the SFR-M* plane and at different cosmic epochs. Finally, we infer what is the parameter that best correlates with AGN accretion, comparing our results with previous studies and discussing their physical implications in the context of current scenarios of AGN/galaxy evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis work we will explore and discuss the properties of the gamma-ray sources included in the first Fermi-LAT catalog of sources above 10 GeV (1FHL), by considering both blazars and the non negligible fraction of still unassociated gamma-ray sources (UGS, 13%). We perform a statistical analysis of a complete sample of hard gamma-ray sources, included in the 1FHL catalog, mostly composed of HSP blazars, and we present new VLBI observations of the faintest members of the sample. The new VLBI data, complemented by an extensive search of the archives for brighter sources, are essential to gather a sample as large as possible for the assessment of the significance of the correlation between radio and very high energy (E>100 GeV) emission bands. After the characterization of the statistical properties of HSP blazars and UGS, we use a complementary approach, by focusing on an intensive multi-frequency observing VLBI and gamma-ray campaign carried out for one of the most remarkable and closest HSP blazar Markarian 421.