179 resultados para Geo-transformare
Resumo:
The Calabrian-Peloritani arc represents key site to unravel evolution of surface processes on top of subducting lithosphere. During the Pleistocene, in fact the arc uplifted at rate of the order of about 1mm/yr, forming high-standing low-relief upland (figure 2). Our study is focused on the relationship between tectonic and land evolution in the Sila Massif, Messina strait and Peloritani Mts. Landforms reflect a competition between tectonic, climatic, and surficial processes. Many landscape evolution models that explore feedbacks between these competing processes, given steady forcing, predict a state of erosional equilibrium, where the rates of river incision and hillslope erosion balance rock uplift. It has been suggested that this may be the final constructive stage of orogenic systems. Assumptions of steady erosion and incision are used in the interpretation of exhumation and uplift rates from different geologic data, and in the formulation of fluvial incision and hillslope evolution models. In the Sila massif we carried out cosmogenic isotopes analysis on 24 samples of modern fluvial sediments to constrain long-term (~103 yr) erosion rate averaged on the catchment area. 35 longitudinal rivers profiles have been analyzed to study the tectonic signal on the landscape evolution. The rivers analyzed exhibit a wide variety of profile forms, diverging from equilibrium state form. Generally the river profiles show at least 2 and often 3 distinct concave-up knickpoint-bounded segments, characterized by different value of concavity and steepness indices. River profiles suggest three main stages of incision. The values of ks and θ in the lower segments evidence a decrease in river incision, due probably to increasing uplift rate. The cosmogenic erosion rates pointed out that old landscape upland is eroding slowly at ~0.1 mm/yr. In the contrary, the flanks of the massif is eroding faster with value from 0.4 to 0.5 mm/yr due to river incision and hillslope processes. Cosmogenic erosion rates mach linearly with steepness indices and with average hillslope gradient. In the Messina area the long term erosion rate from low-T thermochronometry are of the same order than millennium scale cosmogenic erosion rate (1-2 mm/yr). In this part of the chain the fast erosion is active since several million years, probably controlled by extensional tectonic regime. In the Peloritani Mts apatite fission-track and (U-Th)/He thermochronometry are applied to constraint the thermal history of the basement rock. Apatite fission-track ages range between 29.0±5.5 and 5.5±0.9 Ma while apatite (U-Th)/He ages vary from 19.4 to 1.0 Ma. Most of the AFT ages are younger than the overlying terrigenous sequence that in turn postdates the main orogenic phase. Through the coupling of the thermal modelling with the stratigraphic record, a Middle Miocene thermal event due to tectonic burial is unravel. This event affected a inner-intermediate portion of the Peloritani belt confined by young AFT data (<15 Ma) distribution. We interpret this thermal event as due to an out-of–sequence thrusting occurring in the inner portion of the belt. Young (U-Th)/He ages (c. 5 Ma) record a final exhumation stage with increasing rates of denudation since the Pliocene times due to postorogenic extensional tectonics and regional uplift. In the final chapter we change the spatial scale to insert digital topography analysis and field data within a geodynamic model that can explain surface evidence produced by subduction process.
Resumo:
A multidisciplinary study was carried out on the Late Quaternary-Holocene subsurface deposits of two Mediterranean coastal areas: Arno coastal plain (Northern Tyrrhenian Sea) and Modern Po Delta (Northern Adriatic Sea). Detailed facies analyses, including sedimentological and micropalaeontological (benthic foraminifers and ostracods) investigations, were performed on nine continuously-cored boreholes of variable depth (ca. from 30 meters to100 meters). Six cores were located in the Arno coastal plain and three cores in the Modern Po Delta. To provide an accurate chronological framework, twenty-four organic-rich samples were collected along the fossil successions for radiocarbon dating (AMS 14C). In order to reconstruct the depositional and palaeoenvironmental evolution of the study areas, core data were combined with selected well logs, provided by local companies, along several stratigraphic sections. These sections revealed the presence of a transgressive-regressive (T-R) sequence, composing of continental, coastal and shallow-marine deposits dated to the Late Pleistocene-Holocene period, beneath the Arno coastal plain and the Modern Po Delta. Above the alluvial deposits attributed to the last glacial period, the post-glacial transgressive succession (TST) consists of back-barrier, transgressive barrier and inner shelf deposits. Peak of transgression (MFS) took place around the Late-Middle Holocene transition and was identified by subtle micropalaeontological indicators within undifferentiated fine-grained deposits. Upward a thick prograding succession (HST) records the turnaround to regressive conditions that led to a rapid delta progradation in both study areas. Particularly, the outbuilding of modern-age Po Delta coincides with mud-belt formation during the late HST (ca. 600 cal yr BP), as evidenced by a fossil microfauna similar to the foraminiferal assemblage observed in the present Northern Adriatic mud-belt. A complex interaction between allocyclic and autocyclic factors controlled facies evolution during the highstand period. The presence of local parameters and the absence of a predominant factor prevent from discerning or quantifying consequences of the complex relationships between climate and deltaic evolution. On the contrary transgressive sedimentation seems to be mainly controlled by two allocyclic key factors, sea-level rise and climate variability, that minimized the effects of local parameters on coastal palaeoenvironments. TST depositional architecture recorded in both study areas reflects a well-known millennial-scale variability of sea-level rising trend and climate during the Late glacial-Holocene period. Repeated phases of backswamp development and infilling by crevasse processes (parasequences) were recorded in the subsurface of Modern Po Delta during the early stages of transgression (ca. 11,000-9,500 cal yr BP). In the Arno coastal plain the presence of a deep-incised valley system, probably formed at OSI 3/2 transition, led to the development of a thick (ca. 35-40 m) transgressive succession composed of coastal plain, bay-head delta and estuarine deposits dated to the Last glacial-Early Holocene period. Within the transgressive valley fill sequence, high-resolution facies analyses allowed the identification and lateral tracing of three parasequences of millennial duration. The parasequences, ca. 8-12 meters thick, are bounded by flooding surfaces and show a typical internal shallowing-upward trend evidenced by subtle micropalaeontological investigations. The vertical stacking pattern of parasequences shows a close affinity with the step-like sea-level rising trend occurred between 14,000-8,000 cal years BP. Episodes of rapid sea-level rise and subsequent stillstand phases were paralleled by changes in climatic conditions, as suggested by pollen analyses performed on a core drilled in the proximal section of the Arno palaeovalley (pollen analyses performed by Dr. Marianna Ricci Lucchi). Rapid shifts to warmer climate conditions accompanied episodes of rapid sea-level rise, in contrast stillstand phases occurred during temporary colder climate conditions. For the first time the palaeoclimatic signature of high frequency depositional cycles is clearly documented. Moreover, two of the three "regressive" pulsations, recorded at the top of parasequences by episodes of partial estuary infilling in the proximal and central portions of Arno palaeovalley, may be correlated with the most important cold events of the post-glacial period: Younger Dryas and 8,200 cal yr BP event. The stratigraphic and palaeoclimatic data of Arno coastal plain and Po Delta were compared with those reported for the most important deltaic and coastal systems in the worldwide literature. The depositional architecture of transgressive successions reflects the strong influence of millennial-scale eustatic and climatic variability on worldwide coastal sedimentation during the Late glacial-Holocene period (ca. 14,000-7,000 cal yr BP). The most complete and accurate record of high-frequency eustatic and climatic events are usually found within the transgressive succession of very high accommodation settings, such as incised-valley systems where exceptionally thick packages of Late glacial-Early Holocene deposits are preserved.
Resumo:
The work undertaken in this PhD thesis is aimed at the development and testing of an innovative methodology for the assessment of the vulnerability of coastal areas to marine catastrophic inundation (tsunami). Different approaches are used at different spatial scales and are applied to three different study areas: 1. The entire western coast of Thailand 2. Two selected coastal suburbs of Sydney – Australia 3. The Aeolian Islands, in the South Tyrrhenian Sea – Italy I have discussed each of these cases study in at least one scientific paper: one paper about the Thailand case study (Dall’Osso et al., in review-b), three papers about the Sydney applications (Dall’Osso et al., 2009a; Dall’Osso et al., 2009b; Dall’Osso and Dominey-Howes, in review) and one last paper about the work at the Aeolian Islands (Dall’Osso et al., in review-a). These publications represent the core of the present PhD thesis. The main topics dealt with are outlined and discussed in a general introduction while the overall conclusions are outlined in the last section.
Resumo:
The research for this PhD project consisted in the application of the RFs analysis technique to different data-sets of teleseismic events recorded at temporary and permanent stations located in three distinct study regions: Colli Albani area, Northern Apennines and Southern Apennines. We found some velocity models to interpret the structures in these regions, which possess very different geologic and tectonics characteristics and therefore offer interesting case study to face. In the Colli Albani some of the features evidenced in the RFs are shared by all the analyzed stations: the Moho is almost flat and is located at about 23 km depth, and the presence of a relatively shallow limestone layer is a stable feature; contrariwise there are features which vary from station to station, indicating local complexities. Three seismic stations, close to the central part of the former volcanic edifice, display relevant anisotropic signatures with symmetry axes consistent with the emplacement of the magmatic chamber. Two further anisotropic layers are present at greater depth, in the lower crust and the upper mantle, respectively, with symmetry axes directions related to the evolution of the volcano complex. In Northern Apennines we defined the isotropic structure of the area, finding the depth of the Tyrrhenian (almost 25 km and flat) and Adriatic (40 km and dipping underneath the Apennines crests) Mohos. We determined a zone in which the two Mohos overlap, and identified an anisotropic body in between, involved in the subduction and going down with the Adiratic Moho. We interpreted the downgoing anisotropic layer as generated by post-subduction delamination of the top-slab layer, probably made of metamorphosed crustal rocks caught in the subduction channel and buoyantly rising toward the surface. In the Southern Apennines, we found the Moho depth for 16 seismic stations, and highlighted the presence of an anisotropic layer underneath each station, at about 15-20 km below the whole study area. The moho displays a dome-like geometry, as it is shallow (29 km) in the central part of the study area, whereas it deepens peripherally (down to 45 km); the symmetry axes of anisotropic layer, interpreted as a layer separating the upper and the lower crust, show a moho-related pattern, indicated by the foliation of the layer which is parallel to the Moho trend. Moreover, due to the exceptional seismic event occurred on April 6th next to L’Aquila town, we determined the Vs model for two station located next to the epicenter. An extremely high velocity body is found underneath AQU station at 4-10 km depth, reaching Vs of about 4 km/s, while this body is lacking underneath FAGN station. We compared the presence of this body with other recent works and found an anti-correlation between the high Vs body, the max slip patches and earthquakes distribution. The nature of this body is speculative since such high velocities are consistent with deep crust or upper mantle, but can be interpreted as a as high strength barrier of which the high Vs is a typical connotation.
Resumo:
Forecasting the time, location, nature, and scale of volcanic eruptions is one of the most urgent aspects of modern applied volcanology. The reliability of probabilistic forecasting procedures is strongly related to the reliability of the input information provided, implying objective criteria for interpreting the historical and monitoring data. For this reason both, detailed analysis of past data and more basic research into the processes of volcanism, are fundamental tasks of a continuous information-gain process; in this way the precursor events of eruptions can be better interpreted in terms of their physical meanings with correlated uncertainties. This should lead to better predictions of the nature of eruptive events. In this work we have studied different problems associated with the long- and short-term eruption forecasting assessment. First, we discuss different approaches for the analysis of the eruptive history of a volcano, most of them generally applied for long-term eruption forecasting purposes; furthermore, we present a model based on the characteristics of a Brownian passage-time process to describe recurrent eruptive activity, and apply it for long-term, time-dependent, eruption forecasting (Chapter 1). Conversely, in an effort to define further monitoring parameters as input data for short-term eruption forecasting in probabilistic models (as for example, the Bayesian Event Tree for eruption forecasting -BET_EF-), we analyze some characteristics of typical seismic activity recorded in active volcanoes; in particular, we use some methodologies that may be applied to analyze long-period (LP) events (Chapter 2) and volcano-tectonic (VT) seismic swarms (Chapter 3); our analysis in general are oriented toward the tracking of phenomena that can provide information about magmatic processes. Finally, we discuss some possible ways to integrate the results presented in Chapters 1 (for long-term EF), 2 and 3 (for short-term EF) in the BET_EF model (Chapter 4).
Resumo:
Lo scopo di questa tesi di dottorato è la comparazione di metodi per redarre mappe della vulnerabilità degli acquiferi all’inquinamento. Sono state redatte le mappe di vulnerabilità dell’acquifero della conoide del Reno utilizzando i metodi parametrici SINTACS (Civita e De Maio, 1997) e DRASTIC (Aller et al., 1987). E' stato elaborato un modello tridimensionale del flusso tramite l'utilizzo del software di modellistica numerica FEFLOW. I risultati ottenuti sono stati confrontati con le mappe derivanti dall'appllicazione dei PCSM. E’ stato, inoltre, approfondito lo sviluppo di un modello inverso, che, partendo dalla distruzione del carico piezometrico, fornisce la distribuzione della conducibilità idraulica dell’acquifero.La conoscenza di questo parametro è, infatti, il punto di partenza per lo sviluppo di un nuovo metodo per la definizione della vulnerabilità basato sulla caratterizzazione dell'area di acquifero potenzialmente inquinabile rispetto ad uno sversamento in superficie di un inquinante.L’indice di vulnerabilità viene definito sulla lunghezza del cammino che un inquinante percorrere nell’arco di un anno.
Resumo:
The Thrace Basin is the largest and thickest Tertiary sedimentary basin of the eastern Balkans region and constitutes an important hydrocarbon province. It is located between the Rhodope-Strandja Massif to the north and west, the Marmara Sea and Biga Peninsula to the south, and the Black Sea to the est. It consists of a complex system of depocenters and uplifts with very articulate paleotopography indicated by abrupt lateral facies variations. Its southeastern margin is widely deformed by the Ganos Fault, a segment of the North Anatolian strike-slip fault system . Most of the Thrace Basin fill ranges from the Eocene to the Late Oligocene. Maximum total thickness, including the Neogene-Quaternary succession, reaches 9.000 meters in a few narrow depocenters. This sedimentary succession consists mainly of basin plain turbiditic deposits with a significant volcaniclastic component which evolves upwards to shelf deposits and continental facies, with deltaic bodies prograding towards the basin center in the Oligocene. This work deals with the provenance of Eocene-Oligocene clastic sediments of the southern and western part of Thrace Basin in Turkey and Greece. Sandstone compositional data (78 gross composition analyses and 40 heavy minerals analyses) were used to understand the change in detrital modes which reflects the provenance and geodinamic evolution of the basin. Samples were collected at six localities, which are from west to est: Gökçeada, Gallipoli and South-Ganos (south of Ganos Fault), Alexandroupolis, Korudağ and North-Ganos (north of Ganos Fault). Petrologic (framework composition and heavy-mineral analyses) and stratigraphic-sedimentologic data, (analysis of sedimentologic facies associations along representative stratigraphic sections, paleocurrents) allowed discrimination of six petrofacies; for each petrofacies the sediment dispersal system was delineated. The Thrace Basin fill is made mainly of lithic arkoses and arkosic litharenites with variable amount of low-grade metamorphic lithics (also ophiolitic), neovolcanic lithics, and carbonate grains (mainly extrabasinal). Picotite is the most widespread heavy mineral in all petrofacies. Petrological data on analyzed successions show a complex sediment dispersal pattern and evolution of the basin, indicating one principal detrital input from a source area located to the south, along both the İzmir-Ankara and Intra-Pontide suture lines, and a possible secondary source area, represented by the Rhodope Massif to the west. A significant portion of the Thrace Basin sediments in the study area were derived from ophiolitic source rocks and from their oceanic cover, whereas epimetamorphic detrital components came from a low-grade crystalline basement. An important penecontemporaneous volcanic component is widespread in late Eocene-Oligocene times, indicating widespread post-collisional (collapse?) volcanism following the closure of the Vardar ocean. Large-scale sediment mass wasting from south to north along the southern margin of the Thrace Basin is indicated (i) in late Eocene time by large olistoliths of ophiolites and penecontemporaneous carbonates, and (ii) in the mid-Oligocene by large volcaniclastic olistoliths. The late Oligocene paleogeographic scenario was characterized by large deltaic bodies prograding northward (Osmancik Formation). This clearly indicates that the southern margin of the basin acted as a major sediment source area throughout its Eocene-Oligocene history. Another major sediment source area is represented by the Rhodope Massif, in particolar the Circum-Rhodopic belt, especially for plutonic and metamorphic rocks. Considering preexisting data on the petrologic composition of Thrace Basin, silicilastic sediments in Greece and Bulgaria (Caracciolo, 2009), a Rhodopian provenance could be considered mostly for areas of the Thrace Basin outside our study area, particularly in the northern-central portions of the basin. In summary, the most important source area for the sediment of Thrace Basin in the study area was represented by the exhumed subduction-accretion complex along the southern margin of the basin (Biga Peninsula and western-central Marmara Sea region). Most measured paleocurrent indicators show an eastward paleoflow but this is most likely the result of gravity flow deflection. This is possible considered a strong control due to the east-west-trending synsedimentary transcurrent faults which cuts the Thrace Basin, generating a series of depocenters and uplifts which deeply influenced sediment dispersal and the areal distribution of paleoenvironments. The Thrace Basin was long interpreted as a forearc basin between a magmatic arc to the north and a subduction-accretion complex to the south, developed in a context of northward subduction. This interpretation was challenged by more recent data emphasizing the lack of a coeval magmatic arc in the north and the interpretation of the chaotic deposit which outcrop south of Ganos Fault as olistoliths and large submarine slumps, derived from the erosion and sedimentary reworking of an older mélange unit located to the south (not as tectonic mélange formed in an accretionary prism). The present study corroborates instead the hypothesis of a post-collisional origin of the Thrace Basin, due to a phase of orogenic collapse, which generated a series of mid-Eocene depocenters all along the İzmir-Ankara suture (following closure of the Vardar-İzmir-Ankara ocean and the ensuing collision); then the slab roll-back of the remnant Pindos ocean played an important role in enhancing subsidence and creating additional accommodation space for sediment deposition.
Resumo:
This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on.