79 resultados para Multi-view geometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workaholism is defined as the combination of two underlying dimensions: working excessively and working compulsively. The present thesis aims at achieving the following purposes: 1) to test whether the interaction between environmental and personal antecedents may enhance workaholism; 2) to develop a questionnaire aimed to assess overwork climate in the workplace; 3) to contrast focal employees’ and coworkers’ perceptions of employees’ workaholism and engagement. Concerning the first purpose, the interaction between overwork climate and person characteristics (achievement motivation, perfectionism, conscientiousness, self-efficacy) was explored on a sample of 333 Dutch employees. The results of moderated regression analyses showed that the interaction between overwork climate and person characteristics is related to workaholism. The second purpose was pursued with two interrelated studies. In Study 1 the Overwork Climate Scale (OWCS) was developed and tested using a principal component analysis (N = 395) and a confirmatory factor analysis (N = 396). Two overwork climate dimensions were distinguished, overwork endorsement and lacking overwork rewards. In Study 2 the total sample (N = 791) was used to explore the association of overwork climate with two types of working hard: work engagement and workaholism. Lacking overwork rewards was negatively associated with engagement, whereas overwork endorsement showed a positive association with workaholism. Concerning the third purpose, using a sample of 73 dyads composed by focal employees and their coworkers, a multitrait-multimethod matrix and a correlated trait-correlated method model, i.e. the CT-C(M–1) model, were examined. Our results showed a considerable agreement between raters on focal employees' engagement and workaholism. In contrast, we observed a significant difference concerning the cognitive dimension of workaholism, working compulsively. Moreover, we provided further evidence for the discriminant validity between engagement and workaholism. Overall, workaholism appears as a negative work-related state that could be better explained by assuming a multi-causal and multi-rater approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with heterogeneous architectures in standard workstations. Heterogeneous architectures represent an appealing alternative to traditional supercomputers because they are based on commodity components fabricated in large quantities. Hence their price-performance ratio is unparalleled in the world of high performance computing (HPC). In particular, different aspects related to the performance and consumption of heterogeneous architectures have been explored. The thesis initially focuses on an efficient implementation of a parallel application, where the execution time is dominated by an high number of floating point instructions. Then the thesis touches the central problem of efficient management of power peaks in heterogeneous computing systems. Finally it discusses a memory-bounded problem, where the execution time is dominated by the memory latency. Specifically, the following main contributions have been carried out: A novel framework for the design and analysis of solar field for Central Receiver Systems (CRS) has been developed. The implementation based on desktop workstation equipped with multiple Graphics Processing Units (GPUs) is motivated by the need to have an accurate and fast simulation environment for studying mirror imperfection and non-planar geometries. Secondly, a power-aware scheduling algorithm on heterogeneous CPU-GPU architectures, based on an efficient distribution of the computing workload to the resources, has been realized. The scheduler manages the resources of several computing nodes with a view to reducing the peak power. The two main contributions of this work follow: the approach reduces the supply cost due to high peak power whilst having negligible impact on the parallelism of computational nodes. from another point of view the developed model allows designer to increase the number of cores without increasing the capacity of the power supply unit. Finally, an implementation for efficient graph exploration on reconfigurable architectures is presented. The purpose is to accelerate graph exploration, reducing the number of random memory accesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organizational and institutional scholars have advocated the need to examine how processes originating at an individual level can change organizations or even create new organizational arrangements able to affect institutional dynamics (Chreim et al., 2007; Powell & Colyvas, 2008; Smets et al., 2012). Conversely, research on identity work has mainly investigated the different ways individuals can modify the boundaries of their work in actual occupations, thus paying particular attention to ‘internal’ self-crafting (e.g. Wrzesniewski & Dutton, 2001). Drawing from literatures on possible and alternative self and on positive organizational scholarship (e.g., Obodaru, 2012; Roberts & Dutton, 2009), my argument is that individuals’ identity work can go well beyond the boundaries of internal self-crafting to the creation of new organizational arrangements. In this contribution I analyze, through multiple case studies, healthcare professionals who spontaneously participated in the creation of new organizational arrangements, namely health structures called Community Hospitals. The contribution develops this form of identity work by building a grounded model. My findings disclose the process that leads from the search for the enactment of different self-concepts to positive identities, through the creation of a new organizational arrangement. I contend that this is a particularly complex form of collective identity work because it requires, to be successful, concerted actions of several internal, external and institutional actors, and it also requires balanced tensions that – at the same time - enable individuals’ aspirations and organizational equilibrium. I name this process organizational collective crafting. Moreover I inquire the role of context in supporting the triggering power of those unrealized selves. I contribute to the comprehension of the consequences of self-comparisons, organizational identity variance, and positive identity. The study bears important insights on how identity work originating from individuals can influence organizational outcomes and larger social systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the physico-chemical properties of the contaminants themselves and on features of the hydrogeological system. The main goal of the thesis is to provide new knowledge for the future investigations of sites contaminated by DNAPLs in alluvial settings, proposing innovative investigative approaches and emphasizing some of the key issues and main criticalities of this kind of contaminants in such a setting. To achieve this goal, the hydrogeologic setting below the city of Ferrara (Po plain, northern Italy), which is affected by scattered contamination by chlorinated solvents, has been investigated at different scales (regional and site specific), both from an intrinsic (i.e. groundwater flow systems) and specific (i.e. chlorinated solvent DNAPL behavior) point of view. Detailed investigations were carried out in particular in one selected test-site, known as “Caretti site”, where high-resolution vertical profiling of different kind of data were collected by means of multilevel monitoring systems and other innovative sampling and analytical techniques. This allowed to achieve a deep geological and hydrogeological knowledge of the system and to reconstruct in detail the architecture of contaminants in relationship to the features of the hosting porous medium. The results achieved in this thesis are useful not only at local scale, e.g. employable to interpret the origin of contamination in other sites of the Ferrara area, but also at global scale, in order to address future remediation and protection actions of similar hydrogeologic settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive study of the morphology and the dynamics of the equatorial ionosphere over South America is presented here. A multi parametric approach is used to describe the physical characteristics of the ionosphere in the regions where the combination of the thermospheric electric field and the horizontal geomagnetic field creates the so-called Equatorial Ionization Anomalies. Ground based measurements from GNSS receivers are used to link the Total Electron Content (TEC), its spatial gradients and the phenomenon known as scintillation that can lead to a GNSS signal degradation or even to a GNSS signal ‘loss of lock’. A new algorithm to highlight the features characterizing the TEC distribution is developed in the framework of this thesis and the results obtained are validated and used to improve the performance of a GNSS positioning technique (long baseline RTK). In addition, the correlation between scintillation and dynamics of the ionospheric irregularities is investigated. By means of a software, here implemented, the velocity of the ionospheric irregularities is evaluated using high sampling rate GNSS measurements. The results highlight the parallel behaviour of the amplitude scintillation index (S4) occurrence and the zonal velocity of the ionospheric irregularities at least during severe scintillations conditions (post-sunset hours). This suggests that scintillations are driven by TEC gradients as well as by the dynamics of the ionospheric plasma. Finally, given the importance of such studies for technological applications (e.g. GNSS high-precision applications), a validation of the NeQuick model (i.e. the model used in the new GALILEO satellites for TEC modelling) is performed. The NeQuick performance dramatically improves when data from HF radar sounding (ionograms) are ingested. A custom designed algorithm, based on the image recognition technique, is developed to properly select the ingested data, leading to further improvement of the NeQuick performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays the rise of non-recurring engineering (NRE) costs associated with complexity is becoming a major factor in SoC design, limiting both scaling opportunities and the flexibility advantages offered by the integration of complex computational units. The introduction of embedded programmable elements can represent an appealing solution, able both to guarantee the desired flexibility and upgradabilty and to widen the SoC market. In particular embedded FPGA (eFPGA) cores can provide bit-level optimization for those applications which benefits from synthesis, paying on the other side in terms of performance penalties and area overhead with respect to standard cell ASIC implementations. In this scenario this thesis proposes a design methodology for a synthesizable programmable device designed to be embedded in a SoC. A soft-core embedded FPGA (eFPGA) is hence presented and analyzed in terms of the opportunities given by a fully synthesizable approach, following an implementation flow based on Standard-Cell methodology. A key point of the proposed eFPGA template is that it adopts a Multi-Stage Switching Network (MSSN) as the foundation of the programmable interconnects, since it can be efficiently synthesized and optimized through a standard cell based implementation flow, ensuring at the same time an intrinsic congestion-free network topology. The evaluation of the flexibility potentialities of the eFPGA has been performed using different technology libraries (STMicroelectronics CMOS 65nm and BCD9s 0.11μm) through a design space exploration in terms of area-speed-leakage tradeoffs, enabled by the full synthesizability of the template. Since the most relevant disadvantage of the adopted soft approach, compared to a hardcore, is represented by a performance overhead increase, the eFPGA analysis has been made targeting small area budgets. The generation of the configuration bitstream has been obtained thanks to the implementation of a custom CAD flow environment, and has allowed functional verification and performance evaluation through an application-aware analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topic of this thesis fo cus on the preliminary design and the p erformance analysis of a multirotor platform. A multirotor is an electrically p owered Vertical Take Off (VTOL) machine with more than two rotors that lift and control the platform. Multirotor are agile, compact and robust, making them ideally suited for b oth indo or and outdo or application especially to carry-on several sensors like electro optical multisp ectral sensor or gas sensor. The main disadvantage is the limited endurance due to heavy Li-Po batteries and high disk loading through the use of different small prop ellers. At the same time, the design of the multirotor do es not follow any engineering principle but it follow the ideas of amateurs’ builder. An adaptation of the classic airplane design theory for the preliminary design is implemented to fill the gap and detailed study of the endurance is p erformed to define the right way to make this kind of VTOL platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the analytic study of dynamics of Multi--Rotor Unmanned Aerial Vehicles. It is conceived to give a set of mathematical instruments apt to the theoretical study and design of these flying machines. The entire work is organized in analogy with classical academic texts about airplane flight dynamics. First, the non--linear equations of motion are defined and all the external actions are modeled, with particular attention to rotors aerodynamics. All the equations are provided in a form, and with personal expedients, to be directly exploitable in a simulation environment. This has requited an answer to questions like the trim of such mathematical systems. All the treatment is developed aiming at the description of different multi--rotor configurations. Then, the linearized equations of motion are derived. The computation of the stability and control derivatives of the linear model is carried out. The study of static and dynamic stability characteristics is, thus, addressed, showing the influence of the various geometric and aerodynamic parameters of the machine and in particular of the rotors. All the theoretic results are finally utilized in two interesting cases. One concerns the design of control systems for attitude stabilization. The linear model permits the tuning of linear controllers gains and the non--linear model allows the numerical testing. The other case is the study of the performances of an innovative configuration of quad--rotor aircraft. With the non--linear model the feasibility of maneuvers impossible for a traditional quad--rotor is assessed. The linear model is applied to the controllability analysis of such an aircraft in case of actuator block.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the clinical and MRI outcomes after the implantation of a nanostructured cell free aragonite-based scaffold in patients affected by knee chondral and osteochondral lesions. METHODS: 126 patients (94 men, 32 women; age 32.7±8.8 years) were included according to the following criteria: grade III or IV chondra/osteochondral lesions in the femoral condyles or throclea; 2) no limb axial deviation (i.e. varus or valgus knee > 5°); 3) no signs of knee instability; 4) no concurrent tibial or patellar chondral/osteochondral defects. All patients were treated by arthrotomic implantation of an aragonite based-scaffold by a press-fit technique. Patients were prospectively evaluated by IKDC, Tegner, Lysholm and KOOS scores preoperatively and then at 6, 12, 18 and 24-months follow-up. MRI was also performed to evaluate the amount of defect filling by regenerated cartilage. Failures were defined as the need for re-intervention in the index knee within the follow-up period. RESULTS: Average defect size was 2±1.3 cm2 and in most cases a single scaffold was used. A significant improvement in each clinical score was recorded from basal level to 24 months’ follow-up. In particular, the IKDC subjective score increased from 42.14±16 to 70.94±24.69 and the Tegner score improved from 2.95±1.90 to 4.82±1.85 (p<0.0005). Lysholm score and all the subscales of KOOS showed a similar trend over time. Age of the patient at implantation, size of the defect and BMI were correlated with lower clinical outcome. The presence of OA didn’t influence the clinical results. MRI evaluation showed a significant increase in defect filling over time, with the highest value reached at 24 months. Failures occurred in eleven patients (8.7%). CONCLUSION: The aragonite-based biomimetic osteochondral scaffold proved to be safe, and encouraging clinical and radiographic outcomes were documented up to 2 years’ follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of polymorphism has an important role in several fields of materials science, because structural differences lead to different physico-chemical properties of the system. This PhD work was dedicated to the investigation of polymorphism in Indigo, Thioindigo and Quinacridone, as case studies among the organic pigments employed as semiconductors, and in Paracetamol, Phenytoin and Nabumetone, chosen among some commonly used API. The aim of the research was to improve the understanding on the structures of bulk crystals and thin films, adopting Raman spectroscopy as the method of choice, while resorting to other experimental techniques to complement the gathered information. Different crystalline polymorphs, in fact, may be conveniently distinguished by their Raman spectra in the region of the lattice phonons (10-150 cm-1), the frequencies of which, probing the inter-molecular interactions, are very sensitive to even slight modifications in the molecular packing. In particular, we have used Confocal Raman Microscopy, which is a powerful, yet simple, technique for the investigation of crystal polymorphism in organic and inorganic materials, being capable of monitoring physical modifications, chemical transformations and phase inhomogeneities in crystal domains at the micrometre scale. In this way, we have investigated bulk crystals and thin film samples obtained with a variety of crystal growth and deposition techniques. Pure polymorphs and samples with phase mixing were found and fully characterized. Raman spectroscopy was complemented mainly by XRD measurements for bulk crystals and by AFM, GIXD and TEM for thin films. Structures and phonons of the investigated polymorphs were computed by DFT methods, and the comparison between theoretical and experimental results was used to assess the relative stability of the polymorphs and to assist the spectroscopic investigation. The Raman measurements were thus found to be able to clarify ambiguities in the phase assignments which otherwise the other methods were unable to solve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we deal with the design of experiments in the drug development process, focusing on the design of clinical trials for treatment comparisons (Part I) and the design of preclinical laboratory experiments for proteins development and manufacturing (Part II). In Part I we propose a multi-purpose design methodology for sequential clinical trials. We derived optimal allocations of patients to treatments for testing the efficacy of several experimental groups by also taking into account ethical considerations. We first consider exponential responses for survival trials and we then present a unified framework for heteroscedastic experimental groups that encompasses the general ANOVA set-up. The very good performance of the suggested optimal allocations, in terms of both inferential and ethical characteristics, are illustrated analytically and through several numerical examples, also performing comparisons with other designs proposed in the literature. Part II concerns the planning of experiments for processes composed of multiple steps in the context of preclinical drug development and manufacturing. Following the Quality by Design paradigm, the objective of the multi-step design strategy is the definition of the manufacturing design space of the whole process and, as we consider the interactions among the subsequent steps, our proposal ensures the quality and the safety of the final product, by enabling more flexibility and process robustness in the manufacturing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of bone substitutes is highly researched an innovative material able to fill gaps with high mechanical performances and able to stimulate cell response, permitting the complete restoration of the bone portion. In this respect, the synthesis of new bioactive materials able to mimic the compositional, morphological and mechanical features of bone is considered as the elective approach for effective tissue regeneration. Hydroxyapatite (HA) is the main component of the inorganic part of bone. Additionally ionic substitution can be performed in the apatite lattice producing different effects, depending from the selected ions. Magnesium, in substitution of calcium, and carbonate, in substitution of phosphate, extensively present in the biological bones, are able to improve properties naturally present in the apatitic phase, (i.e. biomimicry, solubility e osteoinductive properties). Other ions can be used to give new useful properties, like antiresorptive or antimicrobial properties, to the apatitic phase. This thesis focused on the development of hydroxyapatite nanophases with multiple ionic substitutions including gallium, or zinc ions, in association with magnesium and carbonate, with the purpose to provide double synergistic functionality as osteogenic and antibacterial biomaterial. Were developed bioactive materials based on Sr-substituted hydroxyapatite in the form of sintered targets. The obtained targets were treated with Pulsed Plasma Deposition (PED) resulting in the deposition of thin film coatings able to improve the roughness and wettability of PEEK, enhancing its osteointegrability. Were investigated heterogeneous gas-solid reactions, addressed to the biomorphic transformations of natural 3D porous structures into bone scaffolds with biomimetic composition and hierarchical organization, for application in load-bearing sites. The kinetics of the different reactions of the process were optimized to achieve complete and controlled phase transformation, maintaining the original 3-D morphology. Massive porous scaffolds made of ion-substituted hydroxyapatite and bone-mimicking structure were developed and tested in 3-D cell culture models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced cell cultures are developing rapidly in biomedical research. Nowadays, various approaches and technologies are being used, however, these culturing systems present limitations from increasing complexity, requiring high costs, and not easily customization. We present two versatile and cost-effective methods for developing culturing systems that integrate 3D cell culture and microfluidic platforms. Firstly, for drug screening applications, many high-quality cell spheres of homogeneous size and shape are required. Conventional approaches usually have a dearth of control over the size and geometry of cell spheres and require sample collection and manipulation. To overcome this difficulty, in this study, hundreds of spheroids of several cell lines were generated using multi-well plates that housed our microdevices. Tumor spheroids grow at a uniform rate (in scaffolded or scaffold-free environments) and can be harvested at will. Microscopy imaging are done in real time during or after the culture. After in situ immunostaining, fluorescence imaging can be conducted while keeping the spatial distribution of spheroids in the microwells. Drug effects were successfully observed through viability, growth, and morphologic investigations. Also, we fabricated a microfluidic device suitable for directed and selective cell culture treatments. The microfluidic device was used to reproduce and confirm in vitro investigations carried out using normal culture methods, using a microglia cell line. The device layout and the syringe pump system, entirely designed in our lab, successfully allowed culture growth and medium flow regulation. Solution flows can be finely controlled, allowing treatments and immunofluorescence in one single chamber selectively. To conclude, we propose the development of two culturing platforms (microstructured well devices and in-flow microfluidic chip), which are the result of separate scientific investigations but have the primary goal of performing treatments in a reproducible manner. Our devices shall improve future studies on drug exposure testing, representing adjustable and versatile cell culture systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with robust adaptive control and its applications, and it is divided into three main parts. The first part is about the design of robust estimation algorithms based on recursive least squares. First, we present an estimator for the frequencies of biased multi-harmonic signals, and then an algorithm for distributed estimation of an unknown parameter over a network of adaptive agents. In the second part of this thesis, we consider a cooperative control problem over uncertain networks of linear systems and Kuramoto systems, in which the agents have to track the reference generated by a leader exosystem. Since the reference signal is not available to each network node, novel distributed observers are designed so as to reconstruct the reference signal locally for each agent, and therefore decentralizing the problem. In the third and final part of this thesis, we consider robust estimation tasks for mobile robotics applications. In particular, we first consider the problem of slip estimation for agricultural tracked vehicles. Then, we consider a search and rescue application in which we need to drive an unmanned aerial vehicle as close as possible to the unknown (and to be estimated) position of a victim, who is buried under the snow after an avalanche event. In this thesis, robustness is intended as an input-to-state stability property of the proposed identifiers (sometimes referred to as adaptive laws), with respect to additive disturbances, and relative to a steady-state trajectory that is associated with a correct estimation of the unknown parameter to be found.