50 resultados para Endocarditis, Neurologia
Resumo:
Background: The natural history of Myotonic Dystrophy type 1 is largely unclear, longitudinal studies are lacking. Objectives: to collect clinical and laboratory data, to evaluate sleep disorders, somatic and autonomic skin fibres, neuropsychological and neuroradiological aspects in DM1 patients. Methods: 72 DM1 patients underwent a standardized clinical and neuroradiological evaluation performed by a multidisciplinary team during 3 years of follow-up. Results: longer disease duration was associated with higher incidence of conduction disorders and lower ejection fraction; higher CVF values were predictors for a reduced risk of cardiopathy. Lower functional pulmonary values were associated with class of expansion and were negatively associated with disease duration; arterial blood gas parameters were not associated with expansion size, disease duration nor with respiratory function test. Excessive daytime sleepiness was not associated with class of expansion nor with any of the clinical parameters examined. We detected apnoea in a large percentage of patients, without differences between the 3 genetic classes; higher CVF values were predictors for a reduced risk of apnoea. Skin biopsies demonstrated the presence of a subclinical small fibre neuropathy with involvement of the somatic fibres. The pupillometry study showed lower pupil size at baseline and a lower constriction response to light. The most affected neuropsychological domains were executive functions, visuoconstructional, attention and visuospatial tasks, with a worse performance of E1 patients in the visuoperceptual ability and social cognition tasks. MRI study demonstrated a decrease in the volumes of frontal, parietal, temporal, occipital cortices, accumbens, putamen nuclei and a more severe volume reduction of the isthmus cingulate, transverse temporal, superior parietal and temporal gyri in E2 patients. Discussion: only some clinical parameters could predict the risk of cardiopathy, pulmonary syndrome and sleep disorders, while other clinical aspects proved to be unpredictable, confirming the importance of periodic clinical follow-up of these patients.
Resumo:
Aims and methods: 1) characterization of patients with Dominant Optic Atrophy (DOA) associated with mutations in AFG3L2 and ACO2 genes in comparison with classical OPA1-DOA; 2) characterization of patients with mtDNA mutations causing MELAS and MERRF syndromes and correlation with heteroplasmy; 3) longitudinal evaluation of subacute m.11778G>A/MTND4 Leber’s Hereditary Optic Neuropathy (LHON) patients co-treated with rAAV2/2-ND4 gene therapy and idebenone. We performed a comprehensive neuro-ophthalmological assessment coupled with electrophysiological examination. Results: 1) We described and compared 23 ACO2 and 13 AFG3L2 patients with 72 OPA1 patients. All patients presented temporally predominant optic atrophy, with ACO2 showing higher RNFL and GCL thicknesses at OCT, while AFG3L2 was virtually-indistinguishable from OPA1. 2) Retinopathy was the most common manifestation in 17/33 MELAS patients, conversely, optic atrophy was the most common finding in 7/8 MERRF patients. Correlation of heteroplasmy with neuro-ophthalmological parameters failed to disclose any significance in MELAS, while it negatively correlated with OCT parameters in MERRF. 3) We compared modifications in visual acuity, OCT and electrophysiological parameters at 3 timepoints in 9 LHON patients. We observed significant decrease of RNFL thickness and reduction of PhNR amplitude. Visual acuity improved of about -0.37 LogMAR, correlating significantly with time from onset and from injection, but not with idebenone therapy duration. Discussion: 1) ACO2 seems associated to better preservation of retinal ganglion cells, depending on a different pathogenic mechanism involving mtDNA maintenance, as opposed to AFG3L2 which is involved in OPA1 processing. 2) MELAS and MERRF patients presented with a clearly distinct ocular phenotype, possibly reflecting a selective susceptibility of different retinal cell types to global energy defect or oxidative stress. 3) Follow up of LHON patients treated with gene therapy confirmed the deterioration in OCT and electrophysiological parameters, while the amount of visual improvement was similar to the one observed in recent clinical trials.
Resumo:
Real-Time Quaking-Induced Conversion (RT-QuIC) is an ultrasensitive assay capable of detecting pathological aggregates of misfolded proteins in biospecimens. In recent years, efforts have been made to find a more feasible and convenient biomatrix as an alternative to CSF, and skin biopsy may be a suitable candidate. This project aimed to evaluate the diagnostic performance of skin RT-QuIC in 3 different cohorts of patients: 1. Creutzfeldt-Jakob disease (CJD), 2. Lewy body disease (LBD), and 3. Isolated REM sleep behavior disorder (iRBD). We studied 71 punch skin samples of 35 patients with CJD, including five assessed in vitam, using 2 two different substrates: Bank vole 23-230 (Bv23-230) and Syrian hamster 23-231 (Ha23-231) recombinant prion protein. Skin prion RT-QuIC showed a 100% specificity with both substrates and a higher sensitivity with the Bv23-230 than Ha23-231 (87.5% vs. 65.6%, respectively). Forty-one patients underwent both lumbar puncture (LB) and skin biopsy; CSF and skin RT-QuIC showed a high level of concordance (38/41, 92.7%). Then, we analyzed samples taken in vitam (n=69) or postmortem (n=49) from patients with Parkinson’s disease (PD), dementia with Lewy bodies (DLB), incidental Lewy body pathology, and neurological controls. Skin α-syn RT-QuIC distinguished LBD patients with an overall accuracy of 94.1% in the two cohorts (sensitivity, 89.2%; specificity, 96.3%). Seventy-nine patients underwent both CSF and skin α-syn RT-QuIC, and the two assays yielded similar diagnostic accuracy (skin, 97.5%; CSF, 98.7%). Finally, we studied 91 iRBD patients and 41 control. In the skin, RT-QuIC showed a sensitivity of 76.9%, specificity of 97.6%, and 82.0% accuracy. 128 participants (88 patients plus 40 controls) underwent both CSF and skin RT-QuIC. The two protocols showed 99.2% of concordance. These works confirmed that skin punch biopsies might represent a valid and convenient alternative to CSF analysis for an early diagnosis of prion diseases and LB-related pathologies.
Resumo:
Alzheimer’s disease (AD) is a chronic, progressive neurodegenerative disease, characterized by the impairment of mnesic and cognitive functions, that represents the most frequent type of dementia in older people worldwide. Aging is the most important risk factor for the sporadic form of the pathology and it is associated to the progressive impairment of the proteostasis network. The endoplasmic reticulum (ER), the main cellular actor involved in proteostasis, appears significantly compromised in AD due to the accumulation of β-amyloid (Aβ) protein and phosphorylated-tau protein. Increasing proteins misfolding activates a specific cellular response known as Unfolded Protein response (UPR) which orchestrates the recovery of ER function. The aim of the present study was to investigate the role of UPR and aging process in a murine model of AD induced by intracerebroventricular (i.c.v.) injection of Aβ1-42 oligomers at 3 or 18 months. The oligomers injection in aged animals caused the increased of memory impairment, oxidative stress, and the depletion of glutathione reserve. Furthermore, the RNA-sequencing analysis was performed and the bioinformatic analysis showed the enrichment of several pathways involved in neurodegeneration and protein regulations. The following analysis highlighted the significant dysregulation of the three branches of the UPR, the protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF-6). In turn, ER stress affected the PI3K/Akt/Gsk3β and MAPK/ERK pathways, highlighting Mapkapk5 as a potential marker of the neurodegenerative process, which regulation could lead to the definition of new pharmacological and neuroprotective strategies to counteract AD.
Disorders of arousal: a physiopathological window to explore the mechanisms regulating sleep arousal
Resumo:
Disorders of Arousal (DoA) belong to NREM parasomnias and are characterized by motor and emotional episodes arising from incomplete awakenings from NREM sleep. DoA episodes embody at the same time the double nature of the arousal process, that is preserving sleep as well as respond to sleep perturbations, thus being an ideal model to study sleep arousal. In the first part of this work, we performed a spectral whole scalp EEG analysis exploring the neurophysiologic correlates of the pre-motor onset of the episodes in a large sample of patients with DoA, disclosing the co-existence of both slow and fast EEG frequencies over overlapping areas before DoA episodes, suggesting an alteration of local sleep mechanisms. Episodes of different complexity were preceded by a similar EEG activation, implying that they possibly share a similar pathophysiology. In the second part of this work, we performed a spectral whole scalp EEG analysis comparing the pre-motor onset of the episodes and normal arousals from healthy sleepers, disclosing the persistence of slow frequencies as well as sigma band (expression of sleep spindles) in DoA episodes. Overall, these results might subtend a higher tendence to preserve sleep and a more defective mechanism toward developing a complete arousal in patients with DoA. In the last part of our work, we evaluated 15 patients with DoA with 15 controls in a functional MRI study during wakefulness in addition to a proton magnetic resonance spectroscopy (1H-MRS) focused on cingulate cortex. We disclosed subtle alterations on posterior cingulate cortex as well as an increased connectivity in sensory-motor network, possibly representing a trait-functional feature responsible for the dysfunctional arousal process in DoA patients