37 resultados para synthesis of 1-indanones


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis deals with the development of novel organocatalytic strategies for asymmetric transformation. The intrinsic versatility of organocatalysis and the use of different activation modes have been exploited to achieve new catalytic enantioselective processes, towards the synthesis of biologically relevant scaffolds. The most investigated organocatalytic system have been those based on H-bond interaction (such as chiral thioureas or phosphoric acids) as well as the ones based on aminocatalysis. Despite conceptually distinct, the transformations detailed in this Thesis are linked together by simple and recurring modes of activation, induction and reactivity, promoted by the catalysts employed. The chemical diversity of the challenges encountered allows to get a precious overall view on organocatalysis, highlighting that enormous chemical diversity can be created by judicious choice of select catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work deals, principally, with the development of different chemical protocols ranging from environmental sustainability peptide synthesis to asymmetric synthesis of modified tryptophans to a series of straightforward procedures for constraining peptide backbones without the need for a pre-formed scaffold. Much efforts have been dedicated to the structural analysis in a biomimetic environment, fundamental for predicting the in vivo conformation of compounds, as well as for giving a rationale to the experimentally determined bioactivity. The conformational analyses in solution has been done mostly by NMR (2D gCosy, Roesy, VT, titration experiments, molecular dynamics, etc.), FT-IR and ECD spectroscopy. As a practical application, 3D rigid scaffolds have been employed for the synthesis of biological active compounds based on peptidomimetic and retro-mimetic structures. These mimics have been investigated for their potential as antiflammatory agents and actually the results obtained are very promising. Moreover, the synthesis of Amo ring permitted the development of an alternative high effective synthetic pathway for obtaining Linezolid antibiotic. The final section is, instead, dedicated to the construction of a new biosensor based on zeolite L SAMs functionalized with the integrin ligand c[RGDfK], that has showed high efficiency for the selective detection of tumor cells. Such kind of sensor could, in fact, enable the convenient, non-invasive detection and diagnosis of cancer in early stages, from a few drops of a patient's blood or other biological fluids. In conclusion, the researches described herein demonstrate that the peptidomimetic approach to 3D definite structures, allows unambiguous investigation of the structure-activity relationships, giving an access to a wide range bioactive compounds of pharmaceutical interest to use not only as potential drugs but also for diagnostic and theranostic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research work has dealt with the study of new catalytic processes for the synthesis of fine chemicals belonging to the class of phenolics, namely 2-phenoxyethanol and hydroxytyrosol. The two synthetic procedures investigated have the advantages of being much closer to the Green Chemistry principles than those currently used industrially. In both cases, the challenge was that of finding catalysts and methods which led to the production of less waste, and used less hazardous chemicals, safer solvents, and reusable heterogeneous catalysts. In the case of 2-phenoxyethanol, the process investigated involves the use of ethylene carbonate (EC) as the reactant for phenol O-hydroxyethylation, in place of ethylene oxide. Besides being a safer reactant, the major advantage of using EC in the new synthesis is the better selectivity to the desired product achieved. Moreover, the solid catalyst based on Na-mordenite was fully recyclable. The reaction mechanism and the effect of the Si/Al ratio in the mordenite were investigated. In the case of hydroxytyrosol, which is one of the most powerful natural antioxidants, a new synthetic procedure was investigated; in fact, the method currently employed, the hydrolysis of oleuropein, an ester extracted from the waste water processing of the olive, makes use of large amounts of organic solvents (hexane, ethyl acetate), and involves several expensive steps of purification. The synthesis procedure set up involves first the reaction between catechol and 2,2-dimethoxyacetaldehyde, followed by the one-pot reduction of the intermediate to give the desired product. Both steps were optimized, in terms of catalyst used, and of reaction conditions, that allowed to reach ca 70% yield in each step. The reaction mechanism was investigated and elucidated. During a 3-month period spent at the University of Valencia (with Prof. A. Corma’s group), a process for the production of diesel additives (2,5-bis(propoxymethyl)furan) from fructose has been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2017, Chronic Respiratory Diseases accounted for almost four million deaths worldwide. Unfortunately, current treatments are not definitive for such diseases. This unmet medical need forces the scientific community to increase efforts in the identification of new therapeutic solutions. PI3K delta plays a key role in mechanisms that promote airway chronic inflammation underlying Asthma and COPD. The first part of this project was dedicated to the identification of novel PI3K delta inhibitors. A first SAR expansion of a Hit, previously identified by a HTS campaign, was carried out. A library of 43 analogues was synthesised taking advantage of an efficient synthetic approach. This allowed the identification of an improved Hit of nanomolar enzymatic potency and moderate selectivity for PI3K delta over other PI3K isoforms. However, this compound exhibited low potency in cell-based assays. Low cellular potency was related to sub optimal phys-chem and ADME properties. The analysis of the X-ray crystal structure of this compound in human PI3K delta guided a second tailored SAR expansion that led to improved cellular potency and solubility. The second part of the thesis was focused on the rational design and synthesis of new macrocyclic Rho-associated protein kinases (ROCKs) inhibitors. Inhibition of these kinases has been associated with vasodilating effects. Therefore, ROCKs could represent attractive targets for the treatment of pulmonary arterial hypertension (PAH). Known ROCK inhibitors suffer from low selectivity across the kinome. The design of macrocyclic inhibitors was considered a promising strategy to obtain improved selectivity. Known inhibitors from literature were evaluated for opportunities of macrocyclization using a knowledge-based approach supported by Computer Aided Drug Design (CADD). The identification of a macrocyclic ROCK inhibitor with enzymatic activity in the low micro molar range against ROCK II represented a promising result that validated this innovative approach in the design of new ROCKs inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroinflammation constitutes a major player in the etiopathology of neurodegenerative diseases (NDDs), by orchestrating several neurotoxic pathways which in concert lead to neurodegeneration. A positive feedback loop occurs between inflammation, microglia activation and misfolding processes that, alongside excitotoxicity and oxidative events, represent crucial features of this intricate scenario. The multi-layered nature of NDDs requires a deepen investigation on how these vicious cycles work. This could further help in the search for effective treatments. Electrophiles are critically involved in the modulation of a variety of neuroprotective responses. Thus, we envisioned their peculiar ability to switch on/off biological activities as a powerful tool for investigating the neurotoxic scenario driven by inflammation in NDDs. In particular, in this thesis project, we wanted to dissect at a molecular level the functional role of (pro)electrophilic moieties of previously synthesized thioesters of variously substituted trans-cinnamic acids, to identify crucial features which could interfere with amyloid aggregation as well as modulate Nrf2 and/or NF-κB activation. To this aim, we first synthesized new compounds to identify bioactive cores which could specifically modulate the intended target. Then, we systematically modified their structure to reach additional pathogenic pathways which could in tandem contribute to the inflammatory process. In particular, following the investigation of the mechanistic underpinnings involving the catechol feature in amyloid binding through the synthesis of new dihydroxyl derivatives, we incorporated the identified antiaggregating nucleus into constrained frames which could contrast neuroinflammation also through the modulation of CB2Rs. In parallel, Nrf2 and/or NF-κB antinflammatory structural requirements were combined with the neuroprotective cores of pioglitazone, an antidiabetic drug endowed with MAO-B inhibitory properties, and memantine, which notably contrasts excitotoxicity. By acting as Swiss army knives, the new set of molecules emerge as promising tools to deepen our insights into the complex scenario regulating NDDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Cystic Fibrosis (CF) the deletion of phenylalanine 508 (F508del) in the CFTR anion channel is associated to misfolding and defective gating of the mutant protein. Among the known proteins involved in CFTR processing, one of the most promising drug target is the ubiquitin ligase RNF5, which normally promotes F508del-CFTR degradation. In this context, a small molecule RNF5 inhibitor is expected to chemically mimic a condition of RNF5 silencing, thus preventing mutant CFTR degradation and causing its stabilization and plasma membrane trafficking. Hence, by exploiting a virtual screening (VS) campaign, the hit compound inh-2 was discovered as the first-in-class inhibitor of RNF5. Evaluation of inh-2 efficacy on CFTR rescue showed that it efficiently decreases ubiquitination of mutant CFTR and increases chloride current in human primary bronchial epithelia. Based on the promising biological results obtained with inh-2, this thesis reports the structure-based design of potential RNF5 inhibitors having improved potency and efficacy. The optimization of general synthetic strategies gave access to a library of analogues of the 1,2,4-thiadiazol-5-ylidene inh-2 for SAR investigation. The new analogues were tested for their corrector activity in CFBE41o- cells by using the microfluorimetric HS-YFP assay as a primary screen. Then, the effect of putative RNF5 inhibitors on proliferation, apoptosis and the formation of autophagic vacuoles was evaluated. Some of the new analogs significantly increased the basal level of autophagy, reproducing RNF5 silencing effect in cell. Among them, one compound also displayed a greater rescue of the F508del-CFTR trafficking defect than inh-2. Our preliminary results suggest that the 1,2,4-thiadiazolylidene could be a suitable scaffold for the discovery of potential RNF5 inhibitors able to rescue mutant CFTRs. Biological tests are still ongoing to acquire in-depth knowledge about the mechanism of action and therapeutic relevance of this unprecedented pharmacological strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal microtubules assembly and dynamics are regulated by several proteins including (MT)-associated protein tau, whose aberrant hyperphosphorylation promotes its dissociation from MTs and its abnormal deposition into neurofibrillary tangles, a common neurotoxic hallmarks of neurodegenerative tauopathies. To date, no disease-modifying drugs have been approved to combat CNS tau-related diseases. The multifactorial etiology of these conditions represents one of the major limits in the discovery of effective therapeutic options. In addition, tau protein functions are orchestrated by diverse post-translational modifications among which phosphorylation mediated by PKs plays a leading role. In this context, conventional single-target therapies are often inadequate in restoring perturbed networks and fraught with adverse side-effects. This thesis reports two distinct approaches to hijack MT defects in neurons. The first is focused on the rational design and synthesis of first-in-class triple inhibitors of GSK-3β, FYN, and DYRK1A, three close-related PKs, which act as master regulators of aberrant tau hyperphosphorylation. A merged multi-target pharmacophore strategy was applied to simultaneously modulate all three targets and achieve a disease-modifying effect. Optimization of ARN25068 by a computationally and crystallographic driven SAR exploration, allowed to rationalize the key structural modifications to maintain a balanced potency against all three targets and develop a new generation of quite well-balanced analogs exhibiting improved physicochemical properties, a good in vitro ADME profile, and promising cell-based anti-tau phosphorylation activity. In Part II, MT-stabilizing compounds have been developed to compensate MT defects in tau-related pathologies. Intensive chemical effort has been devoted to scaling up BL-0884, identified as a promising MT-normalizing TPD, which exhibited favorable ADME-PK, including brain penetration, oral bioavailability, and brain pharmacodynamic activity. A suitable functionalization of the exposed hydroxyl moiety of BL-0884 was carried out to generate corresponding esters and amides possessing a wide range of applications as prodrugs and active targeting for cancer chemotherapy.