83 resultados para mobilité sectorielle
Resumo:
The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.
Resumo:
The PhD project that will be presented in this thesis is focused on the study and optimization of the production process for the manufacturing of electrical powertrain components in the automotive field using the laser beam welding process (LBW). The objective is to define, through experimental activities, an optimized process condition for applications in the electrical field that can be generalized, that is, which guarantees its reproducibility as the types of connections vary and which represents the basis for extending the method to future applications in e-mobility sector. The work developed along two lines of research, the convergence of which made it possible to create prototypes of battery modules based on different types of lithium-ion cells and stator windings for electric motors. On the one hand, the different welding configurations involving the production of batteries based on pouch cells and therefore the welding of aluminum and copper in dissimilar configuration were studied, while for the prismatic cells only one configuration was analyzed. On the other hand, the welding of pure copper hairpins with rectangular shape in edge joint configuration was studied for the production of stator windings. The experimental tests carried out have demonstrated the feasibility of using the LBW process for the production of electric powertrain components entirely designed and developed internally as the types of materials and welding configurations vary; the methodologies required for the characterization methods, necessary for the end-of-line tests, for the evaluation of the properties of the different joint configurations and components (battery and electric motor) were also defined with the aim of obtaining the best performance. The entire doctorate program was conducted in collaboration with Ferrari Auto S.p.A. and the direct industrial application of the issues addressed has been faced.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.
Resumo:
In recent years, radars have been used in many applications such as precision agriculture and advanced driver assistant systems. Optimal techniques for the estimation of the number of targets and of their coordinates require solving multidimensional optimization problems entailing huge computational efforts. This has motivated the development of sub-optimal estimation techniques able to achieve good accuracy at a manageable computational cost. Another technical issue in advanced driver assistant systems is the tracking of multiple targets. Even if various filtering techniques have been developed, new efficient and robust algorithms for target tracking can be devised exploiting a probabilistic approach, based on the use of the factor graph and the sum-product algorithm. The two contributions provided by this dissertation are the investigation of the filtering and smoothing problems from a factor graph perspective and the development of efficient algorithms for two and three-dimensional radar imaging. Concerning the first contribution, a new factor graph for filtering is derived and the sum-product rule is applied to this graphical model; this allows to interpret known algorithms and to develop new filtering techniques. Then, a general method, based on graphical modelling, is proposed to derive filtering algorithms that involve a network of interconnected Bayesian filters. Finally, the proposed graphical approach is exploited to devise a new smoothing algorithm. Numerical results for dynamic systems evidence that our algorithms can achieve a better complexity-accuracy tradeoff and tracking capability than other techniques in the literature. Regarding radar imaging, various algorithms are developed for frequency modulated continuous wave radars; these algorithms rely on novel and efficient methods for the detection and estimation of multiple superimposed tones in noise. The accuracy achieved in the presence of multiple closely spaced targets is assessed on the basis of both synthetically generated data and of the measurements acquired through two commercial multiple-input multiple-output radars.
Resumo:
This thesis deals with optimization techniques and modeling of vehicular networks. Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user. Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.
Resumo:
The research activities described in this thesis were focused on two main topics: the study of shaft-hub joint performance, with particular regard to interference-fitted and adhesively bonded connection, and the fatigue characterization of additively processed metal alloys. The research on interference-fitted shaft-hub joints dealt with some studies in the field of fretting fatigue. Rotating bending fatigue tests were performed on different materials by not conventional specimens to determine the fatigue properties of interference-fitted joints and to investigate the fretting fatigue phenomenon, which led to novel and original results. In adhesively bonded and interference-fitted shaft-hub connections (called hybrid joints) the synergic effect of anaerobic adhesive and interference has the capability of improving the joint strength. However, the adhesive contribution depends on several factors. Therefore, its behavior was investigated for different coupling pressure, coupling procedure, operating temperature and joint design. The study on additively manufactured metal alloy deals with rotating banding fatigue tests. AlSi10Mg and Maraging Stainless Steel CX were involved in the campaign for their wide applicability in Automotive. Build direction, heat and surface treatments were considered as input parameters. Fatigue results were interpreted by statistical method and microscopy analyses in order to determine the effectiveness and the beneficial or detrimental effects of the considered factors. Fracture mode and microstructure were investigated by fractographic and micrographic analyses
Resumo:
L’aumento dei flussi migratori in diversi paesi europei e la diffusione della globalizzazione su scala mondiale hanno determinato lo sviluppo di società multilingue e multiculturali tra cui quella italiana, che negli ultimi decenni si è rapidamente trasformata in una società “super-diversa”. Questi cambiamenti sociali hanno determinato una svolta anche nella ricerca in ambito sociolinguistico, che descrive e analizza la flessibilità delle pratiche comunicative determinate dalla mobilità e che ha adottato il termine translanguaging per riferirsi all’uso flessibile e dinamico dell’intero repertorio linguistico di un parlante, che include sia elementi verbali che non verbali. Questo progetto di ricerca si propone di esplorare le pratiche di translanguaging della comunità migrante di Cesena (Italia) e di indagare le percezioni dei parlanti in relazione alle loro pratiche e identità multilingue. Attraverso l’analisi qualitativa di interazioni spontanee tra i parlanti ed interviste semi-strutturate, i risultati dell’analisi da un lato evidenziano la flessibilità delle pratiche comunicative dei parlanti multilingue e la spontaneità con cui queste avvengono nella loro quotidianità, dall’altro mettono in luce la connotazione negativa che i parlanti attribuiscono alle proprie pratiche di translanguaging, rivelando l’influenza dell’ideologia del monolinguismo.
Resumo:
Nella sindrome metabolica l’insulino-resistenza e l’obesità rappresentano i fattori chiave nello sviluppo di tale patologia, ma il principale player risulta un’infiammazione cronica di basso grado (Chronic Low Grade Inflammation) a carico del tessuto adiposo. Lo scopo di questo progetto di ricerca è quindi stato quello di testare citochine a basso dosaggio come possibile trattamento dell’infiammazione cronica. Le citochine utilizzate (GUNA®-Interleukin 4 (IL-4), GUNA®-Interleukin 10 (IL-10), GUNA®-Melatonin, GUNA®-Melatonin+GUNA®-IL-4.) sono state fornite dall’azienda GUNA S.p.a. Poiché l’infiammazione cronica a basso grado inizia in seguito ad un aumento eccessivo del tessuto adiposo, inizialmente si è valutato l’effetto su una linea di preadipociti murini (3T3-L1). Questa prima parte dello studio ha messo in evidenza come le citochine a basso dosaggio non modificano la vitalità cellulare, anche se agiscono sull’espressione e la localizzazione di vimentina e E-caderina. Inoltre IL-4 e IL-10 sembrano avere una parziale attività inibitoria, non significativa, sull’adipogenesi ad eccezione dell’espressione dell’adiponectina che appare significativamente aumentata. In ultimo i trattamenti con IL-4 e IL-10 hanno mostrato una diminuzione del contenuto di ROS e una ridotta attività antiinfiammatoria dovuta alla diminuzione di IL-6 secreto. Un’altra popolazione cellulare principale nel tessuto adiposo è rappresentata dalle ASC (Adipose Stem Cell). Per tale motivo si è proseguito valutando l’effetto che le citochine low-dose su questo citotipo, evidenziando che il trattamento con le citochine non risulta essere tossico, anche se sembrerebbe rallentare la crescita cellulare, e determina un’inibizione del processo adipogenico. Inoltre il trattamento con IL-10 sembra stimolare le ASC a produrre fattori che inducono una maggiore vasculogenesi e le induce a produrre fattori chemiotattici che determinano una maggiore capacità di rigenerazione tissutale da parte di MSC da derma. Infine, il trattamento con IL-4 e IL-10 stimola probabilmente una minore produzione di citochine pro-infiammatorie che inducono in maniera significativa una minore mobilità di cellule MSC.
Resumo:
The research project aims to study and develop control techniques for a generalized three-phase and multi-phase electric drive able to efficiently manage most of the drive types available for traction application. The generalized approach is expanded to both linear and non- linear machines in magnetic saturation region starting from experimental flux characterization and applying the general inductance definition. The algorithm is able to manage fragmented drives powered from different batteries or energy sources and will be able to ensure operability even in case of faults in parts of the system. The algorithm was tested using model-in-the-loop in software environment and then applied on experimental test benches with collaboration of an external company.
Resumo:
Additive Manufacturing (AM) is nowadays considered an important alternative to traditional manufacturing processes. AM technology shows several advantages in literature as design flexibility, and its use increases in automotive, aerospace and biomedical applications. As a systematic literature review suggests, AM is sometimes coupled with voxelization, mainly for representation and simulation purposes. Voxelization can be defined as a volumetric representation technique based on the model’s discretization with hexahedral elements, as occurs with pixels in the 2D image. Voxels are used to simplify geometric representation, store intricated details of the interior and speed-up geometric and algebraic manipulation. Compared to boundary representation used in common CAD software, voxel’s inherent advantages are magnified in specific applications such as lattice or topologically structures for visualization or simulation purposes. Those structures can only be manufactured with AM employment due to their complex topology. After an accurate review of the existent literature, this project aims to exploit the potential of the voxelization algorithm to develop optimized Design for Additive Manufacturing (DfAM) tools. The final aim is to manipulate and support mechanical simulations of lightweight and optimized structures that should be ready to be manufactured with AM with particular attention to automotive applications. A voxel-based methodology is developed for efficient structural simulation of lattice structures. Moreover, thanks to an optimized smoothing algorithm specific for voxel-based geometries, a topological optimized and voxelized structure can be transformed into a surface triangulated mesh file ready for the AM process. Moreover, a modified panel code is developed for simple CFD simulations using the voxels as a discretization unit to understand the fluid-dynamics performances of industrial components for preliminary aerodynamic performance evaluation. The developed design tools and methodologies perfectly fit the automotive industry’s needs to accelerate and increase the efficiency of the design workflow from the conceptual idea to the final product.
Resumo:
The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.
Resumo:
Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.
Resumo:
The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.
Resumo:
The objective of the PhD thesis was to research technologies and strategies to reduce fuel consumption and pollutants emission produced by internal combustion engines. In order to meet this objective my activity was focused on the research of advanced controls based on cylinder pressure feedback. These types of control strategies were studied because they present promising results in terms of engine efficiency enhancement. In the PhD dissertation two study cases are presented. The first case is relative to a control strategy to be used at the test bench for the optimisation of the spark advance calibration of motorcycle Engine. The second case is relative to a control strategy to be used directly on board of mining engines with the objective or reducing the engine consumption and correct ageing effects. In both cases the strategies proved to be effective but their implementation required the use of specific toolchains for the measure of the cylinder pressure feedback that for a matter of cost makes feasible the strategy use only for applications: • At test bench • In small-markets like large off-road engines The major bottleneck that prevents the implementation of these strategies on mass production is the cost of cylinder pressure sensor. In order to tackle this issue, during the PhD research, the development of a low-cost sensor for the estimation of cylinder pressure was studied. The prototype was a piezo-electric washer designed to replace the standard spark-plug washer or high-pressure fuel injectors gasket. From the data analysis emerged the possibility to use the piezo-electric prototype signal to evaluate with accuracy several combustion metrics compatible for the implementation of advanced control strategies in on-board applications. Overall, the research shows that advanced combustion controls are feasible and beneficial, not only at the test bench or on stationary engines, but also in mass-produced engines.
Resumo:
In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.