41 resultados para data driven approach


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biobanks are key infrastructures in data-driven biomedical research. The counterpoint of this optimistic vision is the reality of biobank governance, which must address various ethical, legal and social issues, especially in terms of open consent, privacy and secondary uses which, if not sufficiently resolved, may undermine participants’ and society’s trust in biobanking. The effect of the digital paradigm on biomedical research has only accentuated these issues by adding new pressure for the data protection of biobank participants against the risks of covert discrimination, abuse of power against individuals and groups, and critical commercial uses. Moreover, the traditional research-ethics framework has been unable to keep pace with the transformative developments of the digital era, and has proven inadequate in protecting biobank participants and providing guidance for ethical practices. To this must be added the challenge of an increased tendency towards exploitation and the commercialisation of personal data in the field of biomedical research, which may undermine the altruistic and solidaristic values associated with biobank participation and risk losing alignment with societal interests in biobanking. My research critically analyses, from a bioethical perspective, the challenges and the goals of biobank governance in data-driven biomedical research in order to understand the conditions for the implementation of a governance model that can foster biomedical research and innovation, while ensuring adequate protection for biobank participants and an alignment of biobank procedures and policies with society’s interests and expectations. The main outcome is a conceptualisation of a socially-oriented and participatory model of biobanks by proposing a new ethical framework that relies on the principles of transparency, data protection and participation to tackle the key challenges of biobanks in the digital age and that is well-suited to foster these goals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main aim of this Ph.D. dissertation is the study of clustering dependent data by means of copula functions with particular emphasis on microarray data. Copula functions are a popular multivariate modeling tool in each field where the multivariate dependence is of great interest and their use in clustering has not been still investigated. The first part of this work contains the review of the literature of clustering methods, copula functions and microarray experiments. The attention focuses on the K–means (Hartigan, 1975; Hartigan and Wong, 1979), the hierarchical (Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999, 2000, 2007) clustering techniques because their performance is compared. Then, the probabilistic interpretation of the Sklar’s theorem (Sklar’s, 1959), the estimation methods for copulas like the Inference for Margins (Joe and Xu, 1996) and the Archimedean and Elliptical copula families are presented. In the end, applications of clustering methods and copulas to the genetic and microarray experiments are highlighted. The second part contains the original contribution proposed. A simulation study is performed in order to evaluate the performance of the K–means and the hierarchical bottom–up clustering methods in identifying clusters according to the dependence structure of the data generating process. Different simulations are performed by varying different conditions (e.g., the kind of margins (distinct, overlapping and nested) and the value of the dependence parameter ) and the results are evaluated by means of different measures of performance. In light of the simulation results and of the limits of the two investigated clustering methods, a new clustering algorithm based on copula functions (‘CoClust’ in brief) is proposed. The basic idea, the iterative procedure of the CoClust and the description of the written R functions with their output are given. The CoClust algorithm is tested on simulated data (by varying the number of clusters, the copula models, the dependence parameter value and the degree of overlap of margins) and is compared with the performance of model–based clustering by using different measures of performance, like the percentage of well–identified number of clusters and the not rejection percentage of H0 on . It is shown that the CoClust algorithm allows to overcome all observed limits of the other investigated clustering techniques and is able to identify clusters according to the dependence structure of the data independently of the degree of overlap of margins and the strength of the dependence. The CoClust uses a criterion based on the maximized log–likelihood function of the copula and can virtually account for any possible dependence relationship between observations. Many peculiar characteristics are shown for the CoClust, e.g. its capability of identifying the true number of clusters and the fact that it does not require a starting classification. Finally, the CoClust algorithm is applied to the real microarray data of Hedenfalk et al. (2001) both to the gene expressions observed in three different cancer samples and to the columns (tumor samples) of the whole data matrix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aging process is characterized by the progressive fitness decline experienced at all the levels of physiological organization, from single molecules up to the whole organism. Studies confirmed inflammaging, a chronic low-level inflammation, as a deeply intertwined partner of the aging process, which may provide the “common soil” upon which age-related diseases develop and flourish. Thus, albeit inflammation per se represents a physiological process, it can rapidly become detrimental if it goes out of control causing an excess of local and systemic inflammatory response, a striking risk factor for the elderly population. Developing interventions to counteract the establishment of this state is thus a top priority. Diet, among other factors, represents a good candidate to regulate inflammation. Building on top of this consideration, the EU project NU-AGE is now trying to assess if a Mediterranean diet, fortified for the elderly population needs, may help in modulating inflammaging. To do so, NU-AGE enrolled a total of 1250 subjects, half of which followed a 1-year long diet, and characterized them by mean of the most advanced –omics and non –omics analyses. The aim of this thesis was the development of a solid data management pipeline able to efficiently cope with the results of these assays, which are now flowing inside a centralized database, ready to be used to test the most disparate scientific hypotheses. At the same time, the work hereby described encompasses the data analysis of the GEHA project, which was focused on identifying the genetic determinants of longevity, with a particular focus on developing and applying a method for detecting epistatic interactions in human mtDNA. Eventually, in an effort to propel the adoption of NGS technologies in everyday pipeline, we developed a NGS variant calling pipeline devoted to solve all the sequencing-related issues of the mtDNA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An extensive study of the morphology and the dynamics of the equatorial ionosphere over South America is presented here. A multi parametric approach is used to describe the physical characteristics of the ionosphere in the regions where the combination of the thermospheric electric field and the horizontal geomagnetic field creates the so-called Equatorial Ionization Anomalies. Ground based measurements from GNSS receivers are used to link the Total Electron Content (TEC), its spatial gradients and the phenomenon known as scintillation that can lead to a GNSS signal degradation or even to a GNSS signal ‘loss of lock’. A new algorithm to highlight the features characterizing the TEC distribution is developed in the framework of this thesis and the results obtained are validated and used to improve the performance of a GNSS positioning technique (long baseline RTK). In addition, the correlation between scintillation and dynamics of the ionospheric irregularities is investigated. By means of a software, here implemented, the velocity of the ionospheric irregularities is evaluated using high sampling rate GNSS measurements. The results highlight the parallel behaviour of the amplitude scintillation index (S4) occurrence and the zonal velocity of the ionospheric irregularities at least during severe scintillations conditions (post-sunset hours). This suggests that scintillations are driven by TEC gradients as well as by the dynamics of the ionospheric plasma. Finally, given the importance of such studies for technological applications (e.g. GNSS high-precision applications), a validation of the NeQuick model (i.e. the model used in the new GALILEO satellites for TEC modelling) is performed. The NeQuick performance dramatically improves when data from HF radar sounding (ionograms) are ingested. A custom designed algorithm, based on the image recognition technique, is developed to properly select the ingested data, leading to further improvement of the NeQuick performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD was driven by an interest for inclusive and participatory approaches. The methodology that bridges science and society is known as 'citizen science' and is experiencing a huge upsurge worldwide, in the scientific and humanities fields. In this thesis, I have focused on three topics: i) assessing the reliability of data collected by volunteers; ii) evaluating the impact of environmental education activities in tourist facilities; and iii) monitoring marine biodiversity through citizen science. In addition to these topics, during my research stay abroad, I developed a questionnaire to investigate people's perceptions of natural areas to promote the implementation of co-management. The results showed that volunteers are not only able to collect sufficiently reliable data, but that during their participation in this type of project, they can also increase their knowledge of marine biology and ecology and their awareness of the impact of human behaviour on the environment. The short-term analysis has shown that volunteers are able to retain what they have learned. In the long term, knowledge is usually forgotten, but awareness is retained. Increased awareness could lead to a change in behaviour and in this case a more environmentally friendly attitude. This aspect could be of interest for the development of environmental education projects in tourism facilities to reduce the impact of tourism on the environment while adding a valuable service to the tourism offer. We also found that nature experiences in childhood are important to connect to nature in adulthood. The results also suggest that membership or volunteering in an environmental education association could be a predictor of people's interest in more participatory approaches to nature management. In most cases, the COVID -19 pandemic had not changed participants' perceptions of the natural environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation proposes an analysis of the governance of the European scientific research, focusing on the emergence of the Open Science paradigm: a new way of doing science, oriented towards the openness of every phase of the scientific research process, able to take full advantage of the digital ICTs. The emergence of this paradigm is relatively recent, but in the last years it has become increasingly relevant. The European institutions expressed a clear intention to embrace the Open Science paradigm (eg., think about the European Open Science Cloud, EOSC; or the establishment of the Horizon Europe programme). This dissertation provides a conceptual framework for the multiple interventions of the European institutions in the field of Open Science, addressing the major legal challenges of its implementation. The study investigates the notion of Open Science, proposing a definition that takes into account all its dimensions related to the human and fundamental rights framework in which Open Science is grounded. The inquiry addresses the legal challenges related to the openness of research data, in light of the European Open Data framework and the impact of the GDPR on the context of Open Science. The last part of the study is devoted to the infrastructural dimension of the Open Science paradigm, exploring the e-infrastructures. The focus is on a specific type of computational infrastructure: the High Performance Computing (HPC) facility. The adoption of HPC for research is analysed from the European perspective, investigating the EuroHPC project, and the local perspective, proposing the case study of the HPC facility of the University of Luxembourg, the ULHPC. This dissertation intends to underline the relevance of the legal coordination approach, between all actors and phases of the process, in order to develop and implement the Open Science paradigm, adhering to the underlying human and fundamental rights.