39 resultados para Trade-off custo-qualidade
Resumo:
In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed.
Resumo:
This thesis focuses on the impact of climate change in alpine ecosystems stressing the response of high elevation terricolous lichen communities. In fact, despite the strong sensitivity of cryptogams to changes in climatic factors, information is still scanty.We collected records in 154 plots placed in the summit area of the Majella Massif. In Following a multitaxon approach, Chapter 1 includes cryptogams and vascular plants. We analysed patterns in species richness, beta diversity and functional composition. In Chapter 2, we analysed the relationships between climatic variables and phylogenetic diversity and structure indices. Chapter 3 provides a long-term response relative to the consequences of climate change on a representative terricolous lichen genus across the Alps. Chapter 4 explores the relationships between the species richness and the functional composition of lichen growing on two types of substrates (carbonatic and siliceous soils) along different elevation gradients in the Eastern Alps. Climate change could affect cryptogams and lichens much more than vascular plants in Mediterranean mountains. Contrasting species-climate and traits-climate relationships were found between lichens and bryophytes, suggesting that each group may be sensitive to different components of climate change. Ongoing climate change may also lead to a loss of genetic diversity at high elevation ranges in the Mediterranean mountains, pauperising the life history richness of lichens. Alpine results forecasted that moderate range loss dynamics will occur at low elevation and in peripheral areas of the alpine chain. Results also support the view that range dynamics could be associated with functional traits mainly related to water-use strategies, dispersal, and establishment ability. We also highlighted the importance of substrates as a main driver of both species’ richness and functional traits composition. A “trade-off” also occurs between stress tolerance and the competitive response of communities of terricolous lichens that grow above siliceous and carbonatic soils.
Resumo:
Sandy coasts represent vital areas whose preservation and maintenance also involve economic and tourist interests. Besides, these dynamic environments undergo the erosion process at different levels depending on their specific characteristics. For this reason, defence interventions are commonly realized by combining engineering solutions and management policies to evaluate their effects over time. Monitoring activities represent the fundamental instrument to obtain a deep knowledge of the investigated phenomenon. Thanks to technological development, several possibilities both in terms of geomatic surveying techniques and processing tools are available, allowing to reach high performances and accuracy. Nevertheless, when the littoral definition includes both emerged and submerged beaches, several issues have to be considered. Therefore, the geomatic surveys and all the following steps need to be calibrated according to the individual application, with the reference system, accuracy and spatial resolution as primary aspects. This study provides the evaluation of the available geomatic techniques, processing approaches, and derived products, aiming at optimising the entire workflow of coastal monitoring by adopting an accuracy-efficiency trade-off. The presented analyses highlight the balance point when the increase in performance becomes an additional value for the obtained products ensuring proper data management. This perspective can represent a helpful instrument to properly plan the monitoring activities according to the specific purposes of the analysis. Finally, the primary uses of the acquired and processed data in monitoring contexts are presented, also considering possible applications for numerical modelling as supporting tools. Moreover, the theme of coastal monitoring has been addressed throughout this thesis by considering a practical point of view, linking to the activities performed by Arpae (Regional agency for prevention, environment and energy of Emilia-Romagna). Indeed, the Adriatic coast of Emilia-Romagna, where sandy beaches particularly exposed to erosion are present, has been chosen as a case study for all the analyses and considerations.
Resumo:
This Doctoral Thesis aims to study and develop advanced and high-efficient battery chargers for full electric and plug-in electric cars. The document is strictly industry-oriented and relies on automotive standards and regulations. In the first part a general overview about wireless power transfer battery chargers (WPTBCs) and a deep investigation about international standards are carried out. Then, due to the highly increasing attention given to WPTBCs by the automotive industry and considering the need of minimizing weight, size and number of components this work focuses on those architectures that realize a single stage for on-board power conversion avoiding the implementation of the DC/DC converter upstream the battery. Based on the results of the state-of-the-art, the following sections focus on two stages of the architecture: the resonant tank and the primary DC/AC inverter. To reach the maximum transfer efficiency while minimizing weight and size of the vehicle assembly a coordinated system level design procedure for resonant tank along with an innovative control algorithm for the DC/AC primary inverter is proposed. The presented solutions are generalized and adapted for the best trade-off topologies of compensation networks: Series-Series and Series-Parallel. To assess the effectiveness of the above-mentioned objectives, validation and testing are performed through a simulation environment, while experimental test benches are carried out by the collaboration of Delft University of Technology (TU Delft).
Resumo:
This Thesis focuses on the principles of international law relevant to the resolution of legal disputes arising from sovereign insolvency conflicts. It attempts to contribute to the “incremental” approach literature by identifying principles, justifying their application in litigation and assessing whether they may help to reconcile the trade-offs prevalent in that context. For that purpose, this Thesis distinguishes between two different types of principles. First, it investigates the “Principles of Public International Law” (henceforth, “PIL principles”). Said category refers to norms of the law of nations which can be considered functionally and structurally similar to domestic constitutional principles (i.e., that can be regarded as “optimization” or “prima facie” requirements). This Thesis underscores the PIL principles protecting the interests of the creditors and citizens as well as the “public interest”, arguing that decision makers face a trade-off between these principles in the context of restructurings. Secondly, this Thesis inquires into the “general principles of domestic law” (henceforth, “GPDs”) which can be applied in sovereign debt restructuring. Two GPDs are identified: a “stay” on litigation and a “cram down” on dissenting creditors’ claims. Although both principles have been identified by the prior literature, this work advances a small but significant “twist” in the methodology used for that purpose: it relies exclusively on functional and comparative analysis. Moreover, this work justifies the application of said GPDs for two jurisdictions: New York and Germany. Finally, it posits that those GPDs can help to mitigate the trade-offs between PIL principles, thus reconciling the interests at stake.
Resumo:
Laser-based Powder Bed Fusion (L-PBF) technology is one of the most commonly used metal Additive Manufacturing (AM) techniques to produce highly customized and value-added parts. The AlSi10Mg alloy has received more attention in the L-PBF process due to its good printability, high strength/weight ratio, corrosion resistance, and relatively low cost. However, a deep understanding of the effect of heat treatments on this alloy's metastable microstructure is still required for developing tailored heat treatments for the L-PBF AlSi10Mg alloy to overcome the limits of the as-built condition. Several authors have already investigated the effects of conventional heat treatment on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy but often overlooked the peculiarities of the starting supersatured and ultrafine microstructure induced by rapid solidification. For this reason, the effects of innovative T6 heat treatment (T6R) on the microstructure and mechanical behavior of the L-PBF AlSi10Mg alloy were assessed. The short solution soaking time (10 min) and the relatively low temperature (510 °C) reduced the typical porosity growth at high temperatures and led to a homogeneous distribution of fine globular Si particles in the Al matrix. In addition, it increased the amount of Mg and Si in the solid solution available for precipitation hardening during the aging step. The mechanical (at room temperature and 200 °C) and tribological properties of the T6R alloy were evaluated and compared with other solutions, especially with an optimized direct-aged alloy (T5 alloy). Results showed that the innovative T6R alloy exhibits the best mechanical trade-off between strength and ductility, the highest fatigue strength among the analyzed conditions, and interesting tribological behavior. Furthermore, the high-temperature mechanical performances of the heat-treated L-PBF AlSi10Mg alloy make it suitable for structural components operating in mild service conditions at 200 °C.
Resumo:
This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.
Regularization meets GreenAI: a new framework for image reconstruction in life sciences applications
Resumo:
Ill-conditioned inverse problems frequently arise in life sciences, particularly in the context of image deblurring and medical image reconstruction. These problems have been addressed through iterative variational algorithms, which regularize the reconstruction by adding prior knowledge about the problem's solution. Despite the theoretical reliability of these methods, their practical utility is constrained by the time required to converge. Recently, the advent of neural networks allowed the development of reconstruction algorithms that can compute highly accurate solutions with minimal time demands. Regrettably, it is well-known that neural networks are sensitive to unexpected noise, and the quality of their reconstructions quickly deteriorates when the input is slightly perturbed. Modern efforts to address this challenge have led to the creation of massive neural network architectures, but this approach is unsustainable from both ecological and economic standpoints. The recently introduced GreenAI paradigm argues that developing sustainable neural network models is essential for practical applications. In this thesis, we aim to bridge the gap between theory and practice by introducing a novel framework that combines the reliability of model-based iterative algorithms with the speed and accuracy of end-to-end neural networks. Additionally, we demonstrate that our framework yields results comparable to state-of-the-art methods while using relatively small, sustainable models. In the first part of this thesis, we discuss the proposed framework from a theoretical perspective. We provide an extension of classical regularization theory, applicable in scenarios where neural networks are employed to solve inverse problems, and we show there exists a trade-off between accuracy and stability. Furthermore, we demonstrate the effectiveness of our methods in common life science-related scenarios. In the second part of the thesis, we initiate an exploration extending the proposed method into the probabilistic domain. We analyze some properties of deep generative models, revealing their potential applicability in addressing ill-posed inverse problems.
Resumo:
Embedded systems are increasingly integral to daily life, improving and facilitating the efficiency of modern Cyber-Physical Systems which provide access to sensor data, and actuators. As modern architectures become increasingly complex and heterogeneous, their optimization becomes a challenging task. Additionally, ensuring platform security is important to avoid harm to individuals and assets. This study primarily addresses challenges in contemporary Embedded Systems, focusing on platform optimization and security enforcement. The initial section of this study delves into the application of machine learning methods to efficiently determine the optimal number of cores for a parallel RISC-V cluster to minimize energy consumption using static source code analysis. Results demonstrate that automated platform configuration is not only viable but also that there is a moderate performance trade-off when relying solely on static features. The second part focuses on addressing the problem of heterogeneous device mapping, which involves assigning tasks to the most suitable computational device in a heterogeneous platform for optimal runtime. The contribution of this section lies in the introduction of novel pre-processing techniques, along with a training framework called Siamese Networks, that enhances the classification performance of DeepLLVM, an advanced approach for task mapping. Importantly, these proposed approaches are independent from the specific deep-learning model used. Finally, this research work focuses on addressing issues concerning the binary exploitation of software running in modern Embedded Systems. It proposes an architecture to implement Control-Flow Integrity in embedded platforms with a Root-of-Trust, aiming to enhance security guarantees with limited hardware modifications. The approach involves enhancing the architecture of a modern RISC-V platform for autonomous vehicles by implementing a side-channel communication mechanism that relays control-flow changes executed by the process running on the host core to the Root-of-Trust. This approach has limited impact on performance and it is effective in enhancing the security of embedded platforms.