37 resultados para Smoking in literature
Resumo:
Chromosomal and genetic syndromes are frequently associated with dental and cranio-facial alterations. The aim of our study is to identify and describe the dental and craniofacial alterations typical of six genetic and chromosomal syndromes examined. Materials and Methods- A dental visit was performed to 195 patients referred from Sant’Orsola Hospital of Bologna, University of Bologna, to Service of Special Need Dentistry, Dental Clinic, Department of Biomedical and Neuromotor Science, University of Bologna. The patients recruited were 137 females and 58 males, in an age range of 3-49 years (mean age of 13.8±7.4). The total sample consisted of subjects affected with Down Syndrome (n=133), Familiar Hypophosphatemic Ricket (n=10), Muscular Dystrophies (n=12), Noonan Syndrome (n=13), Turner Syndrome (n=17), Williams Syndrome(n=10). A questionnaire regarding detailed medical and dental history, oral health and dietary habits, was filled by parents/caregivers, or patients themselves when possible. The intra-oral and extra-oral examination valued the presence of facial asymmetries, oral habits, dental and skeletal malocclusions, dental formula, dental anomalies, Plaque Index (Silness&LÖe Index), caries prevalence (dmft/DMFT index), gingivitis and periodontal disease, and mucosal lesions. Radiographic examinations (Intraoral radiographies, Orthopanoramic, Skull teleradiography) were executed according to patient’s age and treatment planning. A review of literature about each syndrome and its dental and cranio-facial characteristics and about caries, hygiene status and malocclusion prevalence on syndromic and non-syndromic population was performed. Results - The data of all the patients were collected in the “Data Collection Tables” created for each syndrome. General anamnesis information, oral hygiene habits and dmft/DMFT, PI, malocclusion prevalence were calculated and compared to syndromic and non-syndromic population results found in literature. Discussions and conclusions - Guidelines of Special Care dentistry were indicated for each syndrome, in relation to each syndrome features and individual patient characteristics.
Resumo:
This thesis focuses on the energy efficiency in wireless networks under the transmission and information diffusion points of view. In particular, on one hand, the communication efficiency is investigated, attempting to reduce the consumption during transmissions, while on the other hand the energy efficiency of the procedures required to distribute the information among wireless nodes in complex networks is taken into account. For what concerns energy efficient communications, an innovative transmission scheme reusing source of opportunity signals is introduced. This kind of signals has never been previously studied in literature for communication purposes. The scope is to provide a way for transmitting information with energy consumption close to zero. On the theoretical side, starting from a general communication channel model subject to a limited input amplitude, the theme of low power transmission signals is tackled under the perspective of stating sufficient conditions for the capacity achieving input distribution to be discrete. Finally, the focus is shifted towards the design of energy efficient algorithms for the diffusion of information. In particular, the endeavours are aimed at solving an estimation problem distributed over a wireless sensor network. The proposed solutions are deeply analyzed both to ensure their energy efficiency and to guarantee their robustness against losses during the diffusion of information (against information diffusion truncation more in general).
Resumo:
INTRODUCTION: Glyphosate is the most widely applied pesticide worldwide and it is an active ingredient of all glyphosate-based herbicides (GBHs), including in the formulation “Roundup” . It is unclear if the glyphosate present in ground water can be absorbed and translocated in different parts of the pants, particularly wheat plants. This indeed represents an important aspect for productivity (being this a powerful herbicide) and organic certification of the products (the use of glyphosate is not admitted in organic farming and the ubiquitous contamination of glyphosate in water might in theory affect the level of glyphosate in the plants). Overall, epidemiological, in vivo and in vitro studies available in literature present conflicting findings on the safety of glyphosate. METHODS: The work performed for this PhD thesis aimed to experimentally test the root absorption and the eventual translocation of the glyphosate herbicide in the different parts of the wheat plant (Triticum durum) starting from ground water. Furthermore we aimed to experimentally test the effects of the exposure to GBHs at doses of glyphosate considered to be “safe”, the US ADI of 1.75 mg/kg bw/day, defined as the chronic Reference Dose (cRfD) determined by the US EPA, in in vivo models (Sprague-Dawley rats) and in vitro models (Caco2 and L929). RESULTS: All the experimental absorption studies on wheat plants performed have given negative results in terms of the presence of glyphosate or AMPA in the grain of durum wheat. On the other hand the experimental safety studies on in vitro and in vivo models highlighted different effects at doses currently considered safe for humans and with no effects in animals. CONCLUSION: Overall the integration of the findings from absorption in plants and safety studies will serve as solid evidence-base for risk assessment and productive strategies for agriculture.
Resumo:
Introduction: A higher frequency of sleep and breathing disorders in Multiple System Atrophy (MSA) populations is documented in literature. The analysis of disease progression and prognosis in patients with sleep and breathing disorders could shed light on specific neuropathology and pathophysiology of MSA. Objective: To characterize sleep disorders and their longitudinal modifications during disease course in MSA patients, and to determine their prognostic value. Methods: This is a retrospective and prospective cohort study including 182 MSA patients (58.8% males). Type of onset was defined by the first reported motor or autonomic symptom/sign related to MSA. The occurrence of symptoms/signs and milestones of disease progression and their latency were collected. REM sleep behaviour disorder (RBD) and stridor were video-polysomnography (VPSG)-confirmed. VPSG recordings were analysed in a standardized fashion during the disease course. Survival data were based on time to death from the first symptom of disease. Results: Isolated RBD represented the first MSA symptom in 30% of patients, preceding disease onset according to international criteria with a median of 3(1–5) years. Patients developing early stridor or presenting with RBD at disease onset showed a more rapid and severe disease progression. These features had independent negative prognostic value for survival. Sleep architecture was characterized by peculiar features which could represent negative markers in MSA prognosis. Patients with stridor treated with tracheostomy showed a reduced risk of death. Conclusions: This is one of the first studies focusing on longitudinal progression of sleep in MSA. Sleep disorders are key features of disease, playing a role in presentation, prognosis and progression. In our MSA cohort, RBD represented the most frequent mode of disease presentation. Moreover, some specific clinical and instrumental sleep features could represent a hallmark of MSA and could be involved in prognosis and, in particular, in sudden death and death during sleep.
Resumo:
Network monitoring is of paramount importance for effective network management: it allows to constantly observe the network’s behavior to ensure it is working as intended and can trigger both automated and manual remediation procedures in case of failures and anomalies. The concept of SDN decouples the control logic from legacy network infrastructure to perform centralized control on multiple switches in the network, and in this context, the responsibility of switches is only to forward packets according to the flow control instructions provided by controller. However, as current SDN switches only expose simple per-port and per-flow counters, the controller has to do almost all the processing to determine the network state, which causes significant communication overhead and excessive latency for monitoring purposes. The absence of programmability in the data plane of SDN prompted the advent of programmable switches, which allow developers to customize the data-plane pipeline and implement novel programs operating directly in the switches. This means that we can offload certain monitoring tasks to programmable data planes, to perform fine-grained monitoring even at very high packet processing speeds. Given the central importance of network monitoring exploiting programmable data planes, the goal of this thesis is to enable a wide range of monitoring tasks in programmable switches, with a specific focus on the ones equipped with programmable ASICs. Indeed, most network monitoring solutions available in literature do not take computational and memory constraints of programmable switches into due account, preventing, de facto, their successful implementation in commodity switches. This claims that network monitoring tasks can be executed in programmable switches. Our evaluations show that the contributions in this thesis could be used by network administrators as well as network security engineers, to better understand the network status depending on different monitoring metrics, and thus prevent network infrastructure and service outages.
Resumo:
Gliomas are one of the most frequent primary malignant brain tumors. Acquisition of stem-like features likely contributes to the malignant nature of high-grade gliomas and may be responsible for the initiation, growth, and recurrence of these tumors. In this regard, although the traditional 2D cell culture system has been widely used in cancer research, it shows limitations in maintaining the stemness properties of cancer and in mimicking the in vivo microenvironment. In order to overcome these limitations, different three-dimensional (3D) culture systems have been developed to mimic better the tumor microenvironment. Cancer cells cultured in 3D structures may represent a more reliable in vitro model due to increased cell-cell and cell-extracellular matrix (ECM) interaction. Several attempts to recreate brain cancer tissue in vitro are described in literature. However, to date, it is still unclear which main characteristics the ideal model should reproduce. The overall goal of this project was the development of a 3D in vitro model able to reproduce the brain ECM microenvironment and to recapitulate pathological condition for the study of tumor stroma interactions, tumor invasion ability, and molecular phenotype of glioma cells. We performed an in silico bioinformatic analysis using GEPIA2 Software to compare the expression level of seven matrix protein in the LGG tumors with healthy tissues. Then, we carried out a FFPE retrospective study in order to evaluate the percentage of expression of selected proteins. Thus, we developed a 3D scaffold composed by Hyaluronic Acid and Collagen IV in a ratio of 50:50. We used two astrocytoma cell lines, HTB-12 and HTB-13. In conclusion, we developed an in vitro 3D model able to reproduce the composition of brain tumor ECM, demonstrating that it is a feasible platform to investigate the interaction between tumor cells and the matrix.
Resumo:
Among all, the application of nanomaterials in biomedical research and most recently in the environmental one has opened the fields of nanomedicine and nanoremediation. Sensing methods based on fluorescence optical probe are generally requested for their selectivity, sensitivity. However, most imaging methods in literature rely on a fluorescent covalent labelling of the system. Therefore, the main aim of this project was to synthetise a biocompatible fluorogenic hyaluronan probe (HA) polymer functionalised with a rhomadine B (RB) moieties and study its behaviour as an optical probe with different materials with microscopy techniques. A derivatization of HA with RB (HA-RB) was successfully obtained providing a photophysical characterization showing a particular fluorescence mechanism of the probe. Firstly, we tested the interaction with different lab-grade micro and nanoplastics in water. Thanks to the peculiar photophysical behaviour of the probe nanoplastics can be detected with confocal microscopy and more interestingly their nature can be discriminated based on the fluorescence lifetime decay with FLIM microscopy. After, the interaction of a model plant derived metabolic enzyme GAPC1 undergoing oxidative-triggered aggregation was explored with the HA-RB. We highlighted the probe interaction with the protein even at early stage of the kinetic. Moreover, nanoparticle tracking analysis (NTA) experiment demonstrates that the probe is in fact able to interact with the small pre-aggregates in the early stage of the aggregation kinetic. Ultimately, we focused on the possibility to apply the probe in a super resolution microscopy technique, PALM, exploiting its aspecific interaction to characterize the surface topography of PTFE polydisperse microplastics. Optimal conditions were reached at high concentration of the probe (70 nM) where 0.5-5 nM is always advisable for this technique. Thanks to the polymeric nature and fluorescence mechanism of the probe, this technique was able to reveal features of PTFE surface under the diffraction limit (< 250 nm).