36 resultados para Modeling Non-Verbal Behaviors Using Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi sviluppa le proposte teoriche della Linguistica Cognitiva a proposito della metafora e propone una loro possibile applicazione in ambito didattico. La linguistica cognitiva costituisce la cornice interpretativa della ricerca, a partire dai suoi concetti principali: la prospettiva integrata, l’embodiment, la centralità della semantica, l’attenzione per la psicolinguistica e le neuroscienze. All’interno di questo panorama, prende vigore un’idea di metafora come punto d’incontro tra lingua e pensiero, come criterio organizzatore delle conoscenze, strumento conoscitivo fondamentale nei processi di apprendimento. A livello didattico, la metafora si rivela imprescindibile sia come strumento operativo che come oggetto di riflessione. L’approccio cognitivista può fornire utili indicazioni su come impostare un percorso didattico sulla metafora. Nel presente lavoro, si indaga in particolare l’uso didattico di stimoli non verbali nel rafforzamento delle competenze metaforiche di studenti di scuola media. Si è scelto come materiale di partenza la pubblicità, per due motivi: il diffuso impiego di strategie retoriche in ambito pubblicitario e la specificità comunicativa del genere, che permette una chiara disambiguazione di fenomeni che, in altri contesti, non potrebbero essere analizzati con la stessa univocità. Si presenta dunque un laboratorio finalizzato al miglioramento della competenza metaforica degli studenti che si avvale di due strategie complementari: da una parte, una spiegazione ispirata ai modelli cognitivisti, sia nella terminologia impiegata che nella modalità di analisi (di tipo usage-based); dall’altra un training con metafore visive in pubblicità, che comprende una fase di analisi e una fase di produzione. È stato usato un test, suddiviso in compiti specifici, per oggettivare il più possibile i progressi degli studenti alla fine del training, ma anche per rilevare le difficoltà e i punti di forza nell’analisi rispetto sia ai contesti d’uso (letterario e convenzionale) sia alle forme linguistiche assunte dalla metafora (nominale, verbale, aggettivale).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

People tend to automatically mimic facial expressions of others. If clear evidence exists on the effect of non-verbal behavior (emotion faces) on automatic facial mimicry, little is known about the role of verbal behavior (emotion language) in triggering such effects. Whereas it is well-established that political affiliation modulates facial mimicry, no evidence exists on whether this modulation passes also through verbal means. This research addressed the role of verbal behavior in triggering automatic facial effects depending on whether verbal stimuli are attributed to leaders of different political parties. Study 1 investigated the role of interpersonal verbs, referring to positive and negative emotion expressions and encoding them at different levels of abstraction, in triggering corresponding facial muscle activation in a reader. Study 2 examined the role of verbs expressing positive and negative emotional behaviors of political leaders in modulating automatic facial effects depending on the matched or mismatched political affiliation of participants and politicians of left-and right-wing. Study 3 examined whether verbs expressing happiness displays of ingroup politicians induce a more sincere smile (Duchenne) pattern among readers of same political affiliation relative to happiness expressions of outgroup politicians. Results showed that verbs encoding facial actions at different levels of abstraction elicited differential facial muscle activity (Study 1). Furthermore, political affiliation significantly modulated facial activation triggered by emotion verbs as participants showed more congruent and enhanced facial activity towards ingroup politicians’ smiles and frowns compared to those of outgroup politicians (Study 2). Participants facially responded with a more sincere smile pattern towards verbs expressing smiles of ingroup compared to outgroup politicians (Study 3). Altogether, results showed that the role of political affiliation in modulating automatic facial effects passes also through verbal channels and is revealed at a fine-grained level by inducing quantitative and qualitative differences in automatic facial reactions of readers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.