37 resultados para Low-Power Image Sensors
Resumo:
In next generation Internet-of-Things, the overhead introduced by grant-based multiple access protocols may engulf the access network as a consequence of the proliferation of connected devices. Grant-free access protocols are therefore gaining an increasing interest to support massive multiple access. In addition to scalability requirements, new demands have emerged for massive multiple access, including latency and reliability. The challenges envisaged for future wireless communication networks, particularly in the context of massive access, include: i) a very large population size of low power devices transmitting short packets; ii) an ever-increasing scalability requirement; iii) a mild fixed maximum latency requirement; iv) a non-trivial requirement on reliability. To this aim, we suggest the joint utilization of grant-free access protocols, massive MIMO at the base station side, framed schemes to let the contention start and end within a frame, and succesive interference cancellation techniques at the base station side. In essence, this approach is encapsulated in the concept of coded random access with massive MIMO processing. These schemes can be explored from various angles, spanning the protocol stack from the physical (PHY) to the medium access control (MAC) layer. In this thesis, we delve into both of these layers, examining topics ranging from symbol-level signal processing to succesive interference cancellation-based scheduling strategies. In parallel with proposing new schemes, our work includes a theoretical analysis aimed at providing valuable system design guidelines. As a main theoretical outcome, we propose a novel joint PHY and MAC layer design based on density evolution on sparse graphs.
Resumo:
The city of tomorrow is a major integrating stake, which crosses a set of major broad spectrum domains. One of these areas is the instrumentation of this city and the ubiquity of the exchange of data, which will give the pulse of this city (sensors) and its breathing in a hyper-connected world within indoor and outdoor dense areas (data exchange, 5G and 6G). Within this context, the proposed doctorate project has the objective to realize cost- and energy- effective, short-range communication systems for the capillary wireless coverage of in-door environments with low electromagnetic impact and for highly dense outdoor networks. The result will be reached through the combined use of: 1) Radio over Fiber (RoF) Technology, to bring the Radio Frequency (RF) signal to the different areas to be covered. 2) Beamforming antennas to send in real time the RF power just in the direction(s) where it is really necessary.
Resumo:
Power electronic circuits are moving towards higher switching frequencies, exploiting the capabilities of novel devices to shrink the dimension of passive components. This trend demands sensors capable enough to operate at such high frequencies. This thesis aims to demonstrate through experimental characterization, the broadband capability of a fully integrated CMOS X-Hall current sensor in current mode interfaced with a transimpedance amplifier (TIA), chip CH09, realized in CMOS technology for power electronics applications such as power converters. The system exploits a common-mode control system to operate the dual supply system, 5-V for the X-Hall probe and 1.2-V for the readout. The developed prototype achieves a maximum acquisition bandwidth of 12 MHz, a power consumption of 11.46 mW, resolution of 39 mArms, a sensitivity of 8 % /T, and a FoM of 569-MHz/A2mW, significantly higher than current state-of-the-art. Further enhancements were proposed to CH09 as a new chip CH100, aiming for accuracy levels prerequisite for a real-time power electronic application. The TIA was optimized for a wider bandwidth of 26.7 MHz with nearly 30% reduction of the integrated input referred noise of 26.69 nArms at the probe-AFE interface in the frequency band of DC-30 MHz, and a 10% improvement in the dynamic range. The expected input range is 5-A. The chip incorporates a dual sensing chain for differential sensing to overcome common mode interferences. A novel offset cancellation technique is proposed that would require switching of polarity of bias currents. Thermal gain drift was improved by a factor of 8 and will be digitally calibrated utilizing a new built-in temperature sensor with a post calibration measurement accuracy greater than 1%. The estimated power consumption of the entire system is 55.6 mW. Both prototypes have been implemented through a 90-nm microelectronic process from STMicroelectronics and occupy a silicon area of 2.4 mm2.
Resumo:
Combined Cooling Heat and Power Generation (CCHP) or trigeneration has been considered worldwide as a suitable alternative to traditional energy systems in terms of significant energy saving and environmental conservation. The development and evaluation of a solar driven micro-CCHP system based on a ORC cogenerator and an Adsorption Chiller (AC) experimental prototypes has been the focus of this PhD research. The specific objectives of the overall project are: • To design, construct and evaluate an innovative Adsorption Chiller in order to improve the performances of the AC technology. • To thermodynamically model the proposed micro-scale solar driven CHP system and to prove that the concept of trigeneration through solar energy combined with an organic Rankine turbine cycle (ORC) and an adsorption chiller (AC) is suitable for residential applications.
Resumo:
Spectral sensors are a wide class of devices that are extremely useful for detecting essential information of the environment and materials with high degree of selectivity. Recently, they have achieved high degrees of integration and low implementation cost to be suited for fast, small, and non-invasive monitoring systems. However, the useful information is hidden in spectra and it is difficult to decode. So, mathematical algorithms are needed to infer the value of the variables of interest from the acquired data. Between the different families of predictive modeling, Principal Component Analysis and the techniques stemmed from it can provide very good performances, as well as small computational and memory requirements. For these reasons, they allow the implementation of the prediction even in embedded and autonomous devices. In this thesis, I will present 4 practical applications of these algorithms to the prediction of different variables: moisture of soil, moisture of concrete, freshness of anchovies/sardines, and concentration of gasses. In all of these cases, the workflow will be the same. Initially, an acquisition campaign was performed to acquire both spectra and the variables of interest from samples. Then these data are used as input for the creation of the prediction models, to solve both classification and regression problems. From these models, an array of calibration coefficients is derived and used for the implementation of the prediction in an embedded system. The presented results will show that this workflow was successfully applied to very different scientific fields, obtaining autonomous and non-invasive devices able to predict the value of physical parameters of choice from new spectral acquisitions.
Resumo:
The design process of any electric vehicle system has to be oriented towards the best energy efficiency, together with the constraint of maintaining comfort in the vehicle cabin. Main aim of this study is to research the best thermal management solution in terms of HVAC efficiency without compromising occupant’s comfort and internal air quality. An Arduino controlled Low Cost System of Sensors was developed and compared against reference instrumentation (average R-squared of 0.92) and then used to characterise the vehicle cabin in real parking and driving conditions trials. Data on the energy use of the HVAC was retrieved from the car On-Board Diagnostic port. Energy savings using recirculation can reach 30 %, but pollutants concentration in the cabin builds up in this operating mode. Moreover, the temperature profile appeared strongly nonuniform with air temperature differences up to 10° C. Optimisation methods often require a high number of runs to find the optimal configuration of the system. Fast models proved to be beneficial for these task, while CFD-1D model are usually slower despite the higher level of detail provided. In this work, the collected dataset was used to train a fast ML model of both cabin and HVAC using linear regression. Average scaled RMSE over all trials is 0.4 %, while computation time is 0.0077 ms for each second of simulated time on a laptop computer. Finally, a reinforcement learning environment was built in OpenAI and Stable-Baselines3 using the built-in Proximal Policy Optimisation algorithm to update the policy and seek for the best compromise between comfort, air quality and energy reward terms. The learning curves show an oscillating behaviour overall, with only 2 experiments behaving as expected even if too slow. This result leaves large room for improvement, ranging from the reward function engineering to the expansion of the ML model.
Resumo:
With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.