54 resultados para ISE and ITSE optimization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last few decades an unprecedented technological growth has been at the center of the embedded systems design paramount, with Moore’s Law being the leading factor of this trend. Today in fact an ever increasing number of cores can be integrated on the same die, marking the transition from state-of-the-art multi-core chips to the new many-core design paradigm. Despite the extraordinarily high computing power, the complexity of many-core chips opens the door to several challenges. As a result of the increased silicon density of modern Systems-on-a-Chip (SoC), the design space exploration needed to find the best design has exploded and hardware designers are in fact facing the problem of a huge design space. Virtual Platforms have always been used to enable hardware-software co-design, but today they are facing with the huge complexity of both hardware and software systems. In this thesis two different research works on Virtual Platforms are presented: the first one is intended for the hardware developer, to easily allow complex cycle accurate simulations of many-core SoCs. The second work exploits the parallel computing power of off-the-shelf General Purpose Graphics Processing Units (GPGPUs), with the goal of an increased simulation speed. The term Virtualization can be used in the context of many-core systems not only to refer to the aforementioned hardware emulation tools (Virtual Platforms), but also for two other main purposes: 1) to help the programmer to achieve the maximum possible performance of an application, by hiding the complexity of the underlying hardware. 2) to efficiently exploit the high parallel hardware of many-core chips in environments with multiple active Virtual Machines. This thesis is focused on virtualization techniques with the goal to mitigate, and overtake when possible, some of the challenges introduced by the many-core design paradigm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the PhD program in chemistry, curriculum in environmental chemistry, at the University of Bologna the sustainability of industry was investigated through the application of the LCA methodology. The efforts were focused on the chemical sector in order to investigate reactions dealing with the Green Chemistry and Green Engineering principles, evaluating their sustainability in comparison with traditional pathways by a life cycle perspective. The environmental benefits associated with a reduction in the synthesis steps and the use of renewable feedstock were assessed through a holistic approach selecting two case studies with high relevance from an industrial point of view: the synthesis of acrylonitrile and the production of acrolein. The current approach wants to represent a standardized application of LCA methodology to the chemical sector, which could be extended to several case studies, and also an improvement of the current databases, since the lack of data to fill the inventories of the chemical productions represent a huge limitation, difficult to overcome and that can affects negatively the results of the studies. Results emerged from the analyses confirms that the sustainability in the chemical sector should be evaluated from a cradle-to-gate approach, considering all the stages and flows involved in each pathways in order to avoid shifting the environmental burdens from a steps to another. Moreover, if possible, LCA should be supported by other tools able to investigate the other two dimensions of sustainability represented by the social and economic issues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, we consider the problem of solving large and sparse linear systems of saddle point type stemming from optimization problems. The focus of the thesis is on iterative methods, and new preconditioning srategies are proposed, along with novel spectral estimtates for the matrices involved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This doctorate was funded by the Regione Emilia Romagna, within a Spinner PhD project coordinated by the University of Parma, and involving the universities of Bologna, Ferrara and Modena. The aim of the project was: - Production of polymorphs, solvates, hydrates and co-crystals of active pharmaceutical ingredients (APIs) and agrochemicals with green chemistry methods; - Optimization of molecular and crystalline forms of APIs and pesticides in relation to activity, bioavailability and patentability. In the last decades, a growing interest in the solid-state properties of drugs in addition to their solution chemistry has blossomed. The achievement of the desired and/or the more stable polymorph during the production process can be a challenge for the industry. The study of crystalline forms could be a valuable step to produce new polymorphs and/or co-crystals with better physical-chemical properties such as solubility, permeability, thermal stability, habit, bulk density, compressibility, friability, hygroscopicity and dissolution rate in order to have potential industrial applications. Selected APIs (active pharmaceutical ingredients) were studied and their relationship between crystal structure and properties investigated, both in the solid state and in solution. Polymorph screening and synthesis of solvates and molecular/ionic co-crystals were performed according to green chemistry principles. Part of this project was developed in collaboration with chemical/pharmaceutical companies such as BASF (Germany) and UCB (Belgium). We focused on on the optimization of conditions and parameters of crystallization processes (additives, concentration, temperature), and on the synthesis and characterization of ionic co-crystals. Moreover, during a four-months research period in the laboratories of Professor Nair Rodriguez-Hormedo (University of Michigan), the stability in aqueous solution at the equilibrium of ionic co-crystals (ICCs) of the API piracetam was investigated, to understand the relationship between their solid-state and solution properties, in view of future design of new crystalline drugs with predefined solid and solution properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The following thesis focused on the dry grinding process modelling and optimization for automotive gears production. A FEM model was implemented with the aim at predicting process temperatures and preventing grinding thermal defects on the material surface. In particular, the model was conceived to facilitate the choice of the grinding parameters during the design and the execution of the dry-hard finishing process developed and patented by the company Samputensili Machine Tools (EMAG Group) on automotive gears. The proposed model allows to analyse the influence of the technological parameters, comprising the grinding wheel specifications. Automotive gears finished by dry-hard finishing process are supposed to reach the same quality target of the gears finished through the conventional wet grinding process with the advantage of reducing production costs and environmental pollution. But, the grinding process allows very high values of specific pressure and heat absorbed by the material, therefore, removing the lubricant increases the risk of thermal defects occurrence. An incorrect design of the process parameters set could cause grinding burns, which affect the mechanical performance of the ground component inevitably. Therefore, a modelling phase of the process could allow to enhance the mechanical characteristics of the components and avoid waste during production. A hierarchical FEM model was implemented to predict dry grinding temperatures and was represented by the interconnection of a microscopic and a macroscopic approach. A microscopic single grain grinding model was linked to a macroscopic thermal model to predict the dry grinding process temperatures and so to forecast the thermal cycle effect caused by the process parameters and the grinding wheel specification choice. Good agreement between the model and the experiments was achieved making the dry-hard finishing an efficient and reliable technology to implement in the gears automotive industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with optimization techniques and modeling of vehicular networks. Thanks to the models realized with the integer linear programming (ILP) and the heuristic ones, it was possible to study the performances in 5G networks for the vehicular. Thanks to Software-defined networking (SDN) and Network functions virtualization (NFV) paradigms it was possible to study the performances of different classes of service, such as the Ultra Reliable Low Latency Communications (URLLC) class and enhanced Mobile BroadBand (eMBB) class, and how the functional split can have positive effects on network resource management. Two different protection techniques have been studied: Shared Path Protection (SPP) and Dedicated Path Protection (DPP). Thanks to these different protections, it is possible to achieve different network reliability requirements, according to the needs of the end user. Finally, thanks to a simulator developed in Python, it was possible to study the dynamic allocation of resources in a 5G metro network. Through different provisioning algorithms and different dynamic resource management techniques, useful results have been obtained for understanding the needs in the vehicular networks that will exploit 5G. Finally, two models are shown for reconfiguring backup resources when using shared resource protection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combinatorial optimization problems have been strongly addressed throughout history. Their study involves highly applied problems that must be solved in reasonable times. This doctoral Thesis addresses three Operations Research problems: the first deals with the Traveling Salesman Problem with Pickups and Delivery with Handling cost, which was approached with two metaheuristics based on Iterated Local Search; the results show that the proposed methods are faster and obtain good results respect to the metaheuristics from the literature. The second problem corresponds to the Quadratic Multiple Knapsack Problem, and polynomial formulations and relaxations are presented for new instances of the problem; in addition, a metaheuristic and a matheuristic are proposed that are competitive with state of the art algorithms. Finally, an Open-Pit Mining problem is approached. This problem is solved with a parallel genetic algorithm that allows excavations using truncated cones. Each of these problems was computationally tested with difficult instances from the literature, obtaining good quality results in reasonable computational times, and making significant contributions to the state of the art techniques of Operations Research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the Ph.D. research project was to explore Dual Fuel combustion and hybridization. Natural gas-diesel Dual Fuel combustion was experimentally investigated on a 4-Stroke, 2.8 L, turbocharged, light-duty Diesel engine, considering four operating points in the range between low to medium-high loads at 3000 rpm. Then, a numerical analysis was carried out using a customized version of the KIVA-3V code, in order to optimize the diesel injection strategy of the highest investigated load. A second KIVA-3V model was used to analyse the interchangeability between natural gas and biogas on an intermediate operating point. Since natural gas-diesel Dual Fuel combustion suffers from poor combustion efficiency at low loads, the effects of hydrogen enriched natural gas on Dual Fuel combustion were investigated using a validated Ansys Forte model, followed by an optimization of the diesel injection strategy and a sensitivity analysis to the swirl ratio, on the lowest investigated load. Since one of the main issues of Low Temperature Combustion engines is the low power density, 2-Stroke engines, thanks to the double frequency compared to 4-Stroke engines, may be more suitable to operate in Dual Fuel mode. Therefore, the application of gasoline-diesel Dual Fuel combustion to a modern 2-Stroke Diesel engine was analysed, starting from the investigation of gasoline injection and mixture formation. As far as hybridization is concerned, a MATLAB-Simulink model was built to compare a conventional (combustion) and a parallel-hybrid powertrain applied to a Formula SAE race car.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After initial efforts in the late 1980s, the interest in thermochemiluminescence (TCL) as an effective detection technique has gradually faded due to some drawbacks, such as the high temperatures required to trigger the light emission and the relatively low intensities, which determined a poor sensitivity. Recent advances made with the adoption of variably functionalized 1,2-dioxetanes as innovative luminophores, have proved to be a promising approach for the development of reagentless and ultrasensitive detection methods exploitable in biosensors by using TCL compounds as labels, as either single molecules or included in modified nanoparticles. In this PhD Thesis, a novel class of N-substituted acridine-containing 1,2-dioxetanes was designed, synthesized, and characterized as universal TCL probes endowed with optimal emission-triggering temperatures and higher detectability particularly useful in bioanalytical assays. The different decorations introduced by the insertion of both electron donating (EDGs) and electron withdrawing groups (EWGs) at the 2- and 7-positions of acridine fluorophore was found to profoundly affect the photophysical properties and the activation parameters of the final 1,2-dioxetane products. Challenges in the synthesis of 1,2-dioxetanes were tackled with the recourse to continuous flow photochemistry to achieve the target parent compound in high yields, short reaction time, and easy scalability. Computational studies were also carried out to predict the olefins reactivity in the crucial photooxygenation reaction as well as the final products stability. The preliminary application of TCL prototype molecule has been performed in HaCaT cell lines showing the ability of these molecules to be detected in real biological samples and cell-based assays. Finally, attempts on the characterization of 1,2-dioxetanes in different environments (solid state, optical glue and nanosystems) and the development of bioconjugated TCL probes will be also presented and discussed.