41 resultados para GALAXIES: STARBURST
Resumo:
In this work I present the first measurements of the galaxy stellar mass function (GSMF) from the first public release of the VIPERS catalogue, containing ∼55,000 objects. First, I present the survey design, its scientific goal, the redshift measurements and validation. Then, I provide details about the estimate of galaxy stellar masses, star formation rates, and other physical quantities. I derive the GSMF of different galaxy types (e.g. active and passive galaxies) and as a function of the environment (defined through the local galaxy density contrast). These estimates represent new observational evidence useful to characterise the mechanism of galaxy evolution.
Resumo:
The study of supermassive black hole (SMBH) accretion during their phase of activity (hence becoming active galactic nuclei, AGN), and its relation to the host-galaxy growth, requires large datasets of AGN, including a significant fraction of obscured sources. X-ray data are strategic in AGN selection, because at X-ray energies the contamination from non-active galaxies is far less significant than in optical/infrared surveys, and the selection of obscured AGN, including also a fraction of heavily obscured AGN, is much more effective. In this thesis, I present the results of the Chandra COSMOS Legacy survey, a 4.6 Ms X-ray survey covering the equatorial COSMOS area. The COSMOS Legacy depth (flux limit f=2x10^(-16) erg/s/cm^(-2) in the 0.5-2 keV band) is significantly better than that of other X-ray surveys on similar area, and represents the path for surveys with future facilities, like Athena and X-ray Surveyor. The final Chandra COSMOS Legacy catalog contains 4016 point-like sources, 97% of which with redshift. 65% of the sources are optically obscured and potentially caught in the phase of main BH growth. We used the sample of 174 Chandra COSMOS Legacy at z>3 to place constraints on the BH formation scenario. We found a significant disagreement between our space density and the predictions of a physical model of AGN activation through major-merger. This suggests that in our luminosity range the BH triggering through secular accretion is likely preferred to a major-merger triggering scenario. Thanks to its large statistics, the Chandra COSMOS Legacy dataset, combined with the other multiwavelength COSMOS catalogs, will be used to answer questions related to a large number of astrophysical topics, with particular focus on the SMBH accretion in different luminosity and redshift regimes.
Resumo:
The correlations between the evolution of the Super Massive Black Holes (SMBHs) and their host galaxies suggests that the SMBH accretion on sub-pc scales (active galactice nuclei, AGN) is linked to the building of the galaxy over kpc scales, through the so called AGN feedback. Most of the galaxy assembly occurs in overdense large scale structures (LSSs). AGN residing in powerful sources in LSSs, such as the proto-brightest cluster galaxies (BCGs), can affect the evolution of the surrounding intra-cluster medium (ICM) and nearby galaxies. Among distant AGN, high-redshift radio-galaxies (HzRGs) are found to be excellent BCG progenitor candidates. In this Thesis we analyze novel interferometric observations of the so-called "J1030" field centered around the z = 6.3 SDSS Quasar J1030+0524, carried out with the Atacama large (sub-)millimetre array (ALMA) and the Jansky very large array (JVLA). This field host a LSS assembling around a powerful HzRG at z = 1.7 that shows evidence of positive AGN feedback in heating the surrounding ICM and promoting star-formation in multiple galaxies at hundreds kpc distances. We report the detection of gas-rich members of the LSS, including the HzRG. We showed that the LSS is going to evolve into a local massive cluster and the HzRG is the proto-BCG. we unveiled signatures of the proto-BCG's interaction with the surrounding ICM, strengthening the positive AGN feedback scenario. From the JVLA observations of the "J1030" we extracted one of the deepest extra-galactic radio surveys to date (~12.5 uJy at 5 sigma). Exploiting the synergy with the X-ray deep survey (~500 ks) we investigated the relation of the X-ray/radio emission of a X-ray-selected sample, unveiling that the radio emission is powered by different processes (star-formation and AGN), and that AGN-driven sample is mostly composed by radio-quiet objects that display a significant X-ray/radio correlation.
Resumo:
This PhD project is aimed at investigating the chemical composition of the stellar populations in the closest satellites of the Milky Way (MW), namely the Large and Small Magellanic Cloud (LMC and SMC, respectively) and the remnant of the Sagittarius (Sgr) dwarf spheroidal galaxy. Their proximity allows us to resolve their individual stars both with spectroscopy and photometry, studying in detail the characteristics of their stellar populations. All these objects are interacting galaxies: LMC and SMC are in an early stage of a minor merger event, and Sgr is being disrupted by the tidal field of the MW. There is a plenty of literature regarding the chemical composition of these systems, however, the extension of these galaxies prevents a complete and homogeneous analysis. Therefore, we homogeneously analysed stellar spectra belonging to MW and its satellites galaxies and we derived their chemical compositions. We highlighted the importance of a homogeneous analysis in the comparison among different galaxies or different samples, to avoid systematics due to different methods or physical assumptions.
Resumo:
The dynamics and geometry of the material inflowing and outflowing close to the supermassive black hole in active galactic nuclei are still uncertain. X-rays are the most suitable way to study the AGN innermost regions because of the Fe Kα emission line, a proxy of accretion, and Fe absorption lines produced by outflows. Winds are typically classified as Warm Absorbers (slow and mildly ionized) and Ultra Fast Outflows (fast and highly ionized). Transient Obscurers -optically thick winds that produce strong spectral hardening in X-rays, lasting from days to months- have been observed recently. Emission and absorption features vary on time-scales from hours to years, probing phenomena at different distances from the SMBH. In this work, we use time-resolved spectral analysis to investigate the accretion and ejection flows, to characterize them individually and search for correlations. We analyzed XMM-Newtomn data of a set of the brightest Seyfert 1 galaxies that went through an obscuration event: NGC 3783, NGC 3227, NGC 5548, and NGC 985. Our aim is to search for emission/absorption lines in short-duration spectra (∼ 10ks), to explore regions as close as the SMBH as the statistics allows for, and possibly catch transient phenomena. First we run a blind search to detect emission/absorption features, then we analyze their evolution with Residual Maps: we visualize simultaneously positive and negative residuals from the continuum in the time-energy plane, looking for patterns and relative time-scales. In NGC 3783 we were able to ascribe variations of the Fe Kα emission line to absorptions at the same energy due to clumps in the obscurer, whose presence is detected at >3σ, and to determine the size of the clumps. In NGC 3227 we detected a wind at ∼ 0.2c at ∼ 2σ, briefly appearing during an obscuration event.
Resumo:
A stately fraction of the Universe volume is dominated by almost empty space. Alongside the luminous filamentary structures that make it up, there are vast and smooth regions that have remained outside the Cosmology spotlight during the past decades: cosmic voids. Although essentially devoid of matter, voids enclose fundamental information about the cosmological framework and have gradually become an effective and competitive cosmological probe. In this Thesis work we present fundamental results about the cosmological exploitation of voids. We focused on the number density of voids as a function of their radius, known as void size function, developing an effective pipeline for its cosmological usage. We proposed a new parametrisation of the most used theoretical void size function to model voids identified in the distribution of biased tracers (i.e. dark matter haloes, galaxies and galaxy clusters), a step of fundamental importance to extend the analysis to real data surveys. We then applied our built methodology to study voids in alternative cosmological scenarios. Firstly we exploited voids with the aim of breaking the degeneracies between cosmological scenarios characterised by modified gravity and the inclusion of massive neutrinos. Secondly we analysed voids in the perspective of the Euclid survey, focusing on the void abundance constraining power on dynamical dark energy models with massive neutrinos. Moreover we explored other void statistics like void profiles and clustering (i.e. the void-galaxy and the void-void correlation), providing cosmological forecasts for the Euclid mission. We finally focused on the probe combination, highlighting the incredible potential of the joint analysis of multiple void statistics and of the combination of the void size function with different cosmological probes. Our results show the fundamental role of the void analysis in constraining the fundamental parameters of the cosmological model and pave the way for future studies on this topic.
Resumo:
Cool giant and supergiant stars are among the brightest populations in any stellar system and they are easily observable out to large distances, especially at infrared wavelengths. These stars also dominate the integrated light of star clusters in a wide range of ages, making them powerful tracers of stellar populations in more distant galaxies. High-resolution near-IR spectroscopy is a key tool for quantitatively investigating their kinematic, evolutionary and chemical properties. However, the systematic exploration and calibration of the NIR spectral diagnostics to study these cool stellar populations based on high-resolution spectroscopy is still in its pioneering stage. Any effort to make progress in the field is innovative and of impact on stellar archaeology and stellar evolution. This PhD project takes the challenge of exploring that new parameter space and characterizing the physical properties, the chemical content and the kinematics of cool giants and supergiants in selected disc fields and clusters of our Galaxy, with the ultimate goal of tracing their past and recent star formation and chemical enrichment history. By using optical HARPS-N and near-infrared GIANO-B high-resolution stellar spectra in the context of the large program SPA-Stellar Population Astrophysics: the detailed, age-resolved chemistry of the Milky Way disk” (PI L. Origlia), an extensive study of Arcturus, a standard calibrator for red giant stars, has been performed. New diagnostics of stellar parameters as well as optimal linelists for chemical analysis have been provided. Then, such diagnostics have been used to determine evolutionary properties, detailed chemical abundances of almost 30 different elements and mixing processes of a homogeneous sample of red supergiant stars in the Perseus complex.
Resumo:
This Thesis presents the results of my work on how galaxy clusters form by the accretion of sub-clumps and diffuse materials, and how the accreted energy is distributed in the X-ray emitting plasma. Indeed, on scales larger than tens of millions of light years, the Universe is self-organised by gravity into a spiderweb, the Cosmic Web. Galaxy clusters are the knots of this Cosmic Web, but a strong definition of filaments (which link different knots) and their physical proprieties, is still uncertain. Even if this pattern was determined by studying the spatial distribution of galaxies in the optical band, recently, also in the X-rays probes of filamentary structures around galaxy clusters were obtained. Therefore, given these observational facilities, the galaxy clusters’ outskirts are the best candidate regions to detect filaments and study their physical characteristics. However, from X-rays observations, we have only a few detections of cosmic filaments to date. On the other hand, it is crucial to understand how the accreted energy is dissipated in the baryon content of galaxy clusters and groups. Indeed, it is well known that in the central region of galaxy clusters and groups, the baryon fraction increases with the halo mass. On the outer region, the lack of X-rays constraints influences our understanding of the evolution of baryons in the halos volume. The standard assumption of “closed-box” system, for which the baryon fraction should approach the cosmological ratio Omega_bar/Omega_m, for galaxy clusters and groups seems to be too strong, especially for less massive objects. Moreover, a complete redshift evolution of baryons in galaxy clusters and groups is still missing.
Resumo:
This Thesis explores two novel and independent cosmological probes, Cosmic Chronometers (CCs) and Gravitational Waves (GWs), to measure the expansion history of the Universe. CCs provide direct and cosmology-independent measurements of the Hubble parameter H(z) up to z∼2. In parallel, GWs provide a direct measurement of the luminosity distance without requiring additional calibration, thus yielding a direct measurement of the Hubble constant H0=H(z=0). This Thesis extends the methodologies of both of these probes to maximize their scientific yield. This is achieved by accounting for the interplay of cosmological and astrophysical parameters to derive them jointly, study possible degeneracies, and eventually minimize potential systematic effects. As a legacy value, this work also provides interesting insights into galaxy evolution and compact binary population properties. The first part presents a detailed study of intermediate-redshift passive galaxies as CCs, with a focus on the selection process and the study of their stellar population properties using specific spectral features. From their differential aging, we derive a new measurement of the Hubble parameter H(z) and thoroughly assess potential systematics. In the second part, we develop a novel methodology and pipeline to obtain joint cosmological and astrophysical population constraints using GWs in combination with galaxy catalogs. This is applied to GW170817 to obtain a measurement of H0. We then perform realistic forecasts to predict joint cosmological and astrophysical constraints from black hole binary mergers for upcoming gravitational wave observatories and galaxy surveys. Using these two probes we provide an independent reconstruction of H(z) with direct measurements of H0 from GWs and H(z) up to z∼2 from CCs and demonstrate that they can be powerful independent probes to unveil the expansion history of the Universe.
Resumo:
In this Thesis, we present a series of works that encompass the fundamental steps of cosmological analyses based on galaxy clusters, spanning from mass calibration to deriving cosmological constraints through counts and clustering. Firstly, we focus on the 3D two-point correlation function (2PCF) of the galaxy cluster sample by Planck Collaboration XXVII (2016). The masses of these clusters are expected to be underestimated, as they are derived from a scaling relation calibrated through X-ray observations. We derived a mass bias which disagrees with simulation predictions, consistent with what derived by Planck Collaboration VI (2020). Furthermore, in this Thesis we analyse the cluster counts and 2PCF, respectively, of the photometric galaxy cluster sample developed by Maturi et al. (2019), based on the third data release of KiDS (KiDS-DR3, de Jong et al. 2017). We derived constraints on fundamental cosmological parameters which are consistent and competitive, in terms of uncertainties, with other state-of-the-art cosmological analyses. Then, we introduce a novel approach to establish galaxy colour-redshift relations for cluster weak-lensing analyses, regardless of the specific photometric bands in use. This method optimises the selection completeness of cluster background galaxies while maintaining a defined purity threshold. Based on the galaxy sample by Bisigello et al. (2020), we calibrated two colour selections, one relying on the ground-based griz bands, and the other including the griz and Euclid YJH bands. In addition, we present the preliminary work on the weak-lensing mass calibration of the clusters detected by Maturi et al. (in prep.) in the fourth data release of KiDS (KiDS-1000, Kuijken et al. 2019). This mass calibration will enable the cosmological analyses based on cluster counts and clustering, from which we expect remarkable improvements in the results compared to those derived in KiDS-DR3.
Resumo:
At the center of galaxy clusters, a dramatic interplay known as feedback cycle occurs between the hot intracluster medium (ICM) and the active galactic nucleus (AGN) of the central galaxy. The footprints of this interplay are evident from X-ray observations of the ICM, where X-ray cavities and shock fronts are associated with radio lobe emission tracing energetic AGN outbursts. While such jet activity reduces the efficiency of the hot gas to cool to lower temperatures, residual cooling can generate warm and cold gas clouds around the central galaxy. The condensed gas parcels can ultimately reach the core of the galaxy and be accreted by the AGN. This picture is the result of tremendous advances over the last three decades. Yet, a deeper understanding of the details of how the heating–cooling regulation is achieved and maintained is still missing. In this Thesis, we delve into key aspects of the feedback cycle. To this end, we leverage high-resolution (sub-arcsecond), multifrequency observations (mainly X-ray and radio) of several top-level facilities (e.g., Chandra, JVLA, VLBA, LOFAR). First, we investigate which conditions trigger a feedback response to gas cooling, by studying the properties of clusters where feedback is just about to start. Then, we focus on the details of how the AGN–ICM interaction progresses by examining cavity and shock heating in the cluster RBS797, an exemplary case of the jet feedback paradigm. Furthermore, we explore the importance of shock heating and the coupling of distinct jet power regimes (i.e., FRII, FRI and FR0 radio galaxies) to the environment. Ultimately, as heating models rely on the connection between the direct evidence (the jets) and the smoking gun (the X-ray cavities) of feedback, we examine the cases in which these two are dramatically misaligned.