35 resultados para Functional characterization
Resumo:
Helicobacter pylori is one of the most widespread and successful human pathogens, colonizing half of the population stomach mucosa and causing gastric malignancies in 1% of carriers. Due to the increasing number of antimicrobial-resistant strains, in 2017 the WHO included H. pylori among pathogens that pose a major threat for humankind. In this study, we propose as a molecular target for novel antimicrobial strategies HP1043, an orphan response regulator essential for the viability of H. pylori as it orchestrates all the most important cellular processes. Amino acids most relevant for HP1043 dimerization and target DNA recognition were identified and used to guide an in-silico protein-DNA docking and generate a high-resolution structural model of the interacting HP1043 dimer and its target DNA. The model was experimentally validated and exploited to carry out a virtual screening of small molecule libraries, identifying 8 compounds potentially able to interfere with HP1043 function and likely block H. pylori infection. A second line of research aimed at the characterization of the regulatory function of HP1043 and the tight mechanisms of regulation of hp1043 gene expression. In particular, we proved a direct interaction between HP1043 and the housekeeping sigma80 factor of the RNA polymerase. A conditional mutant H. pylori strain overexpressing a synthetic copy of the hp1043 gene altered in nucleotide sequence yet encoding the wild-type protein was generated, achieving increased intracellular levels of HP1043. However, overexpression of HP1043 did not result in an upregulation of target genes transcription nor modulation of hp1043 transcript levels, pinpointing the existence of multiple overlayed mechanisms of regulation that affect both protein levels and functionality as well as maintain steady the amount of hp1043 transcript. Finally, we proposed that a mechanism of post-transcriptional regulation could depend on an antisense transcript to the hp1043 gene which was validated in two different strains.
Resumo:
In prokaryotic organisms, lower eukaryotes and plants, some important biological reactions are catalyzed by nickel-dependent enzymes, making this metal ion essential microelement for their life. On the other hand, excessive concentration of nickel into the cell, or prolonged exposure to nickel compounds, has toxic effects in living organisms. In addition, nickel has been classified by IARC as Group I human carcinogen, because of the correlation between its inhalation and increased incidence of nasal and lung cancers. The aim of this work was to investigate the nickel impact on human health, considering both its direct role on human cells and its indirect effect as essential element for human important bacteria. In humans, nickel induces N-myc downstream regulated gene 1 (NDRG1) expression, recently proposed as new target in cancer therapy. CD, light scattering and ITC were applied on the recombinant full-length protein and its C-terminal intrinsically disordered domain, for studying the NDRG1 structural and functional properties. In particular, the fold and dynamics of the C-terminal region were examined by NMR spectroscopy and site-directed spin labeling coupled to EPR, showing the features of an intrinsically disordered region. In nickel-dependent bacteria, nickel metabolism is strictly regulated, through the activity of different transcription factors. In Streptomyces griseus the expression of two superoxide dismutases (SODs) is antagonistically regulated by nickel thanks to the transcriptional complex SgSrnR/SgSrnQ. The SgSrnR protein was heterologously expressed and its activity as possible nickel sensor studied. DNaseI footprinting and β-galactosidase gene reporter assays revealed that SgSrnR functions as transcriptional activator, prompting the hypothesis of a new model to describe the activity of this complex. In addition, ITC, NMR and X-ray crystallography demonstrated that SgSrnR presents the fold typical of ArsR/SmtB transcription factors and low metal binding affinity, non compatible with a role as a nickel-sensor, function probably played by its partner SgSrnQ.
Resumo:
Over the last decade, graphene and related materials (GRM) have drawn significant interest and resources for their development into the next generation of composite materials. This is because these nanoparticles have the ability to operate as reinforcing additives capable of imparting considerable mechanical property increases while also embedding multi-functional advantages on the host matrix. Because graphene and 2D materials are still in their early stages, the relative maturity of different types of composite systems varies. As a result, certain nanocomposite systems are currently commercially accessible, while others are not yet sufficiently developed to enter the market. A substantial emphasis has been placed on developing thermoplastic and thermosetting materials that combine a variety of mechanical and functional qualities. These include higher strength and stiffness, increased thermal and electrical conductivity, improved barrier properties, fire retardancy, and others, with the ultimate goal of providing multifunctionality to already employed composites. The work presented in this thesis investigates the use and benefits that GRM could bring to composites for a variety of applications, with the goal of realizing multifunctional components with improved properties that leads to lightweight and, as a result, energy and cost savings and pollution reduction in the environment. In particular, we worked on the following topics: • Benchmarking of commercial GRM-based master batches; • GRM-coatings for water uptake reduction; • GRM as thermo-electrical anti-icing /de-icing system; • GRM for Out of Oven curing of composites.
Resumo:
Uropathogenic Escherichia coli (UPEC) accounts for approximately 85% of all urinary tract infections (UTIs), causing a global economic burden. E. coli is one of the pathogens mentioned in the ESKAPEE list drafted by OMS, meaning that the increasing antibiotic resistance acquired by UPEC is and will be a serious health problem in the future. Amongst the immunogenic antigens exposed on the surface of UPEC, FimH represent a potential target for vaccine development, since it is involved in the early stages of infection. As already demonstrated, immunizations with FimH elicit functional antibodies that prevent UPEC infections even though the number of doses required to elicit a strong immune response is not optimal. In this work, we aimed to stabilize FimH as a soluble recombinant antigen exploiting the donor strand complementation mechanism by generating different chimeric constructs constituted by FimH and FimG donor strand. To explore the potential of self-assembling nanoparticles to display FimH through genetic fusion, different constructs have been computationally designed and produced. In this work a structure-based design, using available crystal structures of FimH and three different NPs was performed to generate different constructs with optimized properties. Despite the different conditions tested, all the constructs designed (single antigen or chimeric NPs), resulted to be un-soluble proteins in E. coli. To overcome this issue a mammalian expression system has been tested. Soluble antigen expression was achieved for all constructs tested in the culture supernatants. Three novel chimeric NPs have been characterized by transmission electron microscopy (TEM) confirming the presence of correctly assembled NPs displaying UPEC antigen. In vivo study has shown a higher immunogenicity of the E. coli antigen when displayed on NPs surface compared to the single recombinant antigen. The antibodies elicited by chimeric NPs showed a higher functionality in the inhibition of bacterial adhesion.
Resumo:
- Aims: Hereditary Transthyretin Amyloidosis (ATTRv) is one of the leading etiologies of systemic amyloidosis with more than 135 mutations described and a broad spectrum of clinical manifestations. We aimed to provide a systematic description of a population of individuals carrying pathogenic mutations of transthyretin (TTR) gene and to investigate the major clinical events during follow up. - Methods: Observational, retrospective, cohort study including consecutive patients with mutations of TTR gene, admitted to a tertiary referral center in Bologna, Italy, between 1984 and 2022. - Results: Three hundred twenty-five patients were included: 106 asymptomatic carriers, 49 cardiac phenotype, 49 neurological phenotype and 121 mixed phenotype. Twenty-three different mutations were found, with Ile68Leu (41.8%), Val30Met (19%), and Glu89Gln (10%) being the most common. After a median follow-up of 51 months data from 290 subjects were analyzed; among them 111 (38.3%) died and 123 (42.4%) had a major clinical event (death or hospitalization for heart failure). Nine (11.5%) of the 78 asymptomatic carriers showed signs and symptoms of the disease. Carriers had a prognosis comparable to healthy population, while no significant differences were seen among the three phenotypes adjusted by age. Age at diagnosis, NYHA functional class, left ventricular ejection fraction, mPND score and disease-modifying therapy were independently associated with survival. - Conclusions: This study offers a wide and comprehensive overview of ATTRv from the point of view of a tertiary referral center in Italy. Three main phenotypes can be identified (cardiac, neurological and mixed) with specific clinical and instrumental features. Family screening programs are essential to identify paucisymptomatic affected patients or unaffected carriers of the mutation, to be followed through the years. Lastly, disease-modifying therapy represents an evolving cornerstone of the management of ATTRv, with a great impact on mortality.