43 resultados para Development of large software systems,
Resumo:
This research activity studied how the uncertainties are concerned and interrelated through the multi-model approach, since it seems to be the bigger challenge of ocean and weather forecasting. Moreover, we tried to reduce model error throughout the superensemble approach. In order to provide this aim, we created different dataset and by means of proper algorithms we obtained the superensamble estimate. We studied the sensitivity of this algorithm in function of its characteristics parameters. Clearly, it is not possible to evaluate a reasonable estimation of the error neglecting the importance of the grid size of ocean model, for the large amount of all the sub grid-phenomena embedded in space discretizations that can be only roughly parametrized instead of an explicit evaluation. For this reason we also developed a high resolution model, in order to calculate for the first time the impact of grid resolution on model error.
Resumo:
The consumer demand for natural, minimally processed, fresh like and functional food has lead to an increasing interest in emerging technologies. The aim of this PhD project was to study three innovative food processing technologies currently used in the food sector. Ultrasound-assisted freezing, vacuum impregnation and pulsed electric field have been investigated through laboratory scale systems and semi-industrial pilot plants. Furthermore, analytical and sensory techniques have been developed to evaluate the quality of food and vegetable matrix obtained by traditional and emerging processes. Ultrasound was found to be a valuable technique to improve the freezing process of potatoes, anticipating the beginning of the nucleation process, mainly when applied during the supercooling phase. A study of the effects of pulsed electric fields on phenol and enzymatic profile of melon juice has been realized and the statistical treatment of data was carried out through a response surface method. Next, flavour enrichment of apple sticks has been realized applying different techniques, as atmospheric, vacuum, ultrasound technologies and their combinations. The second section of the thesis deals with the development of analytical methods for the discrimination and quantification of phenol compounds in vegetable matrix, as chestnut bark extracts and olive mill waste water. The management of waste disposal in mill sector has been approached with the aim of reducing the amount of waste, and at the same time recovering valuable by-products, to be used in different industrial sectors. Finally, the sensory analysis of boiled potatoes has been carried out through the development of a quantitative descriptive procedure for the study of Italian and Mexican potato varieties. An update on flavour development in fresh and cooked potatoes has been realized and a sensory glossary, including general and specific definitions related to organic products, used in the European project Ecropolis, has been drafted.
Resumo:
The main objective of this work was to investigate the impact of different hybridization concepts and levels of hybridization on fuel economy of a standard road vehicle where both conventional and non-conventional hybrid architectures are treated exactly in the same way from the point of view of overall energy flow optimization. Hybrid component models were developed and presented in detail as well as the simulations results mainly for NEDC cycle. The analysis was performed on four different parallel hybrid powertrain concepts: Hybrid Electric Vehicle (HEV), High Speed Flywheel Hybrid Vehicle (HSF-HV), Hydraulic Hybrid Vehicle (HHV) and Pneumatic Hybrid Vehicle (PHV). In order to perform equitable analysis of different hybrid systems, comparison was performed also on the basis of the same usable system energy storage capacity (i.e. 625kJ for HEV, HSF and the HHV) but in the case of pneumatic hybrid systems maximal storage capacity was limited by the size of the systems in order to comply with the packaging requirements of the vehicle. The simulations were performed within the IAV Gmbh - VeLoDyn software simulator based on Matlab / Simulink software package. Advanced cycle independent control strategy (ECMS) was implemented into the hybrid supervisory control unit in order to solve power management problem for all hybrid powertrain solutions. In order to maintain State of Charge within desired boundaries during different cycles and to facilitate easy implementation and recalibration of the control strategy for very different hybrid systems, Charge Sustaining Algorithm was added into the ECMS framework. Also, a Variable Shift Pattern VSP-ECMS algorithm was proposed as an extension of ECMS capabilities so as to include gear selection into the determination of minimal (energy) cost function of the hybrid system. Further, cycle-based energetic analysis was performed in all the simulated cases, and the results have been reported in the corresponding chapters.
Resumo:
Climate-change related impacts, notably coastal erosion, inundation and flooding from sea level rise and storms, will increase in the coming decades enhancing the risks for coastal populations. Further recourse to coastal armoring and other engineered defenses to address risk reduction will exacerbate threats to coastal ecosystems. Alternatively, protection services provided by healthy ecosystems is emerging as a key element in climate adaptation and disaster risk management. I examined two distinct approaches to coastal defense on the base of their ecological and ecosystem conservation values. First, I analyzed the role of coastal ecosystems in providing services for hazard risk reduction. The value in wave attenuation of coral reefs was quantitatively demonstrated using a meta-analysis approach. Results indicate that coral reefs can provide wave attenuation comparable to hard engineering artificial defenses and at lower costs. Conservation and restoration of existing coral reefs are cost-effective management options for disaster risk reduction. Second, I evaluated the possibility to enhance the ecological value of artificial coastal defense structures (CDS) as habitats for marine communities. I documented the suitability of CDS to support native, ecologically relevant, habitat-forming canopy algae exploring the feasibility of enhancing CDS ecological value by promoting the growth of desired species. Juveniles of Cystoseira barbata can be successfully transplanted at both natural and artificial habitats and not affected by lack of surrounding adult algal individuals nor by substratum orientation. Transplantation success was limited by biotic disturbance from macrograzers on CDS compared to natural habitats. Future work should explore the reasons behind the different ecological functioning of artificial and natural habitats unraveling the factors and mechanisms that cause it. The comprehension of the functioning of systems associated with artificial habitats is the key to allow environmental managers to identify proper mitigation options and to forecast the impact of alternative coastal development plans.
Resumo:
The thesis work concerns X-ray spectrometry for both medical and space applications and is divided into two sections. The first section addresses an X-ray spectrometric system designed to study radiological beams and is devoted to the optimization of diagnostic procedures in medicine. A parametric semi-empirical model capable of efficiently reconstructing diagnostic X-ray spectra in 'middle power' computers was developed and tested. In addition, different silicon diode detectors were tested as real-time detectors in order to provide a real-time evaluation of the spectrum during diagnostic procedures. This project contributes to the field by presenting an improved simulation of a realistic X-ray beam emerging from a common X-ray tube with a complete and detailed spectrum that lends itself to further studies of added filtration, thus providing an optimized beam for different diagnostic applications in medicine. The second section describes the preliminary tests that have been carried out on the first version of an Application Specific Integrated Circuit (ASIC), integrated with large area position-sensitive Silicon Drift Detector (SDD) to be used on board future space missions. This technology has been developed for the ESA project: LOFT (Large Observatory for X-ray Timing), a new medium-class space mission that the European Space Agency has been assessing since February of 2011. The LOFT project was proposed as part of the Cosmic Vision Program (2015-2025).
Resumo:
The discovery of the Cosmic Microwave Background (CMB) radiation in 1965 is one of the fundamental milestones supporting the Big Bang theory. The CMB is one of the most important source of information in cosmology. The excellent accuracy of the recent CMB data of WMAP and Planck satellites confirmed the validity of the standard cosmological model and set a new challenge for the data analysis processes and their interpretation. In this thesis we deal with several aspects and useful tools of the data analysis. We focus on their optimization in order to have a complete exploitation of the Planck data and contribute to the final published results. The issues investigated are: the change of coordinates of CMB maps using the HEALPix package, the problem of the aliasing effect in the generation of low resolution maps, the comparison of the Angular Power Spectrum (APS) extraction performances of the optimal QML method, implemented in the code called BolPol, and the pseudo-Cl method, implemented in Cromaster. The QML method has been then applied to the Planck data at large angular scales to extract the CMB APS. The same method has been applied also to analyze the TT parity and the Low Variance anomalies in the Planck maps, showing a consistent deviation from the standard cosmological model, the possible origins for this results have been discussed. The Cromaster code instead has been applied to the 408 MHz and 1.42 GHz surveys focusing on the analysis of the APS of selected regions of the synchrotron emission. The new generation of CMB experiments will be dedicated to polarization measurements, for which are necessary high accuracy devices for separating the polarizations. Here a new technology, called Photonic Crystals, is exploited to develop a new polarization splitter device and its performances are compared to the devices used nowadays.
Resumo:
In this work the hydrodechlorination of CF3OCFClCF2Cl to produce unsaturated CF3OCF=CF2 was studied over a series of supported metal catalysts. Currently this molecule is produced from the precursor CF3OCFClCF2Cl by dechlorination with zinc powder. An important cost on the economic and environmental balance is represents by the large amount of ZnCl2 produced and to be disposed of. A new approach, based on gas-phase hydrodechlorination over supported catalysts can lead to a new sustainable process. During the feasibility step of this project, substantially two kind of materials were studied: metals supported over activated carbon and Pd/Cu species supported over MCM-41 mesoporous silica. Observed catalytic performances were strongly dependent on the metal and support used. All carbon-supported Ru, Pd, and bimetallic catalysts are fairly active and yielded the target product CF3OCF=CF2, the higher selectivity being obtained with ruthenium- and palladium-based materials. Nevertheless, Ru-based catalysts showed poor stability and this deactivation may be attributed to the deposition of chlorinated organic species blocking the active sites. On the other hand, palladium-containing catalysts showed high stability. Ru/Pd and Pd/Cu bimetallic catalysts exhibited long-term selectivity and stability, highlighting the possibility for these materials to be employed in the CF3OCF=CF2 production process. During the second part of this thesis, a series of bimetallic meso-structured Pd/Cu MCM-41 catalysts were studies to overcome possible mass transfer limitations. The materials were obtained by different synthesis methods. The incorporation of Pd and Cu during MCM-41 synthesis, did not destroy the typical hexagonal array and ordered pore system of MCM-41. However, the calcination for the removal of the template provoked significant segregation of oxides. The impregnation leads to pore-occlusion and formation of Cu particles and large bimetallic PdCu species. Larger metal particles leads to lower CF3OCFClCF2Cl conversion, while the monometallic particles can decrease the selectivity to CF3OCF=CF2, fostering the dehalogenation to CF3OCH=CF2.
Resumo:
Beside the traditional paradigm of "centralized" power generation, a new concept of "distributed" generation is emerging, in which the same user becomes pro-sumer. During this transition, the Energy Storage Systems (ESS) can provide multiple services and features, which are necessary for a higher quality of the electrical system and for the optimization of non-programmable Renewable Energy Source (RES) power plants. A ESS prototype was designed, developed and integrated into a renewable energy production system in order to create a smart microgrid and consequently manage in an efficient and intelligent way the energy flow as a function of the power demand. The produced energy can be introduced into the grid, supplied to the load directly or stored in batteries. The microgrid is composed by a 7 kW wind turbine (WT) and a 17 kW photovoltaic (PV) plant are part of. The load is given by electrical utilities of a cheese factory. The ESS is composed by the following two subsystems, a Battery Energy Storage System (BESS) and a Power Control System (PCS). With the aim of sizing the ESS, a Remote Grid Analyzer (RGA) was designed, realized and connected to the wind turbine, photovoltaic plant and the switchboard. Afterwards, different electrochemical storage technologies were studied, and taking into account the load requirements present in the cheese factory, the most suitable solution was identified in the high temperatures salt Na-NiCl2 battery technology. The data acquisition from all electrical utilities provided a detailed load analysis, indicating the optimal storage size equal to a 30 kW battery system. Moreover a container was designed and realized to locate the BESS and PCS, meeting all the requirements and safety conditions. Furthermore, a smart control system was implemented in order to handle the different applications of the ESS, such as peak shaving or load levelling.
Resumo:
In recent years, an increasing attention has been given to the optimization of the performances of new supramolecular systems, as antennas for light collection. In such background, the aim of this thesis was the study of multichromophoric architectures capable of performing such basic action. A synthetic antenna should consist of a structure with large UV-Vis absorption cross-section, panchromatic absorption, fixed orientation of the components and suitable energy gradients between them, in order to funnel absorbed energy towards a specific site, through fast energy-transfer processes. Among the systems investigated in this thesis, three suitable classes of compounds can be identified: 1) transition metal-based multichromophoric arrays, as models for antenna construction, 2) free-base trans-A2B-phenylcorroles, as self-assembling systems to make effective mimics of the photosynthetic system, and 3) a natural harvester, the Photosystem I, immobilized on the photoanode of a solar-to-fuel conversion device. The discussion starts with the description of the photophysical properties of dinuclear quinonoid organometallic systems, able to fulfil some of the above mentioned absorption requirements, displaying in some cases panchromatic absorption. The investigation is extended to the efficient energy transfer processes occurring in supramolecular architectures, suitably organized around rigid organic scaffolds, such as spiro-bifluorene and triptycene. Furthermore, the photophysical characterization of three trans-A2B-phenylcorroles with different substituents on the meso-phenyl ring is introduced, revealing the tendency of such macrocycles to self-organize into dimers, by mimicking natural self-aggregates antenna systems. In the end, the photophysical analysis moved towards the natural super-complex PSI-LHCI, immobilized on the hematite surface of the photoanode of a bio-hybrid dye-sensitized solar cell. The importance of the entire work is related to the need for a deep understanding of the energy transfer mechanisms occurring in supramolecules, to gain insights and improve the strategies for governing the directionality of the energy flow in the construction of well-performing antenna systems.
Resumo:
The increase in aquaculture operations worldwide has provided new opportunities for the transmission of aquatic viruses. The occurrence of viral diseases remains a significant limiting factor in aquaculture production and for the sustainability. The ability to identify quickly the presence/absence of a pathogenic organism in fish would have significant advantages for the aquaculture systems. Several molecular methods have found successful application in fish pathology both for confirmatory diagnosis of overt diseases and for detection of asymptomatic infections. However, a lot of different variants occur among fish host species and virus strains and consequently specific methods need to be developed and optimized for each pathogen and often also for each host species. The first chapter of this PhD thesis presents a complete description of the major viruses that infect fish and provides a relevant information regarding the most common methods and emerging technologies for the molecular diagnosis of viral diseases of fish. The development and application of a real time PCR assay for the detection and quantification of lymphocystivirus was described in the second chapter. It showed to be highly sensitive, specific, reproducible and versatile for the detection and quantitation of lymphocystivirus. The use of this technique can find multiple application such as asymptomatic carrier detection or pathogenesis studies of different LCDV strains. The third chapter, a multiplex RT-PCR (mRT-PCR) assay was developed for the simultaneous detection of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious pancreatic necrosis (IPN) and sleeping disease (SD) in a single assay. This method was able to efficiently detect the viral RNA in tissue samples, showing the presence of single infections and co-infections in rainbow trout samples. The mRT-PCR method was revealed to be an accurate and fast method to support traditional diagnostic techniques in the diagnosis of major viral diseases of rainbow trout.
Resumo:
The research work reported in this Thesis was held along two main lines of research. The first and main line of research is about the synthesis of heteroaromatic compounds with increasing steric hindrance, with the aim of preparing stable atropisomers. The main tools used for the study of these dynamic systems, as described in the Introduction, are DNMR, coupled with line shape simulation and DFT calculations, aimed to the conformational analysis for the prediction of the geometries and energy barriers to the trasition states. This techniques have been applied to the research projects about: • atropisomers of arylmaleimides; • atropisomers of 4-arylpyrazolo[3,4-b]pyridines; • study of the intramolecular NO2/CO interaction in solution; • study on 2-arylpyridines. Parallel to the main project, in collaboration with other groups, the research line about determination of the absolute configuration was followed. The products, deriving form organocatalytic reactions, in many cases couldn’t be analyzed by means of X-Ray diffraction, making necessary the development of a protocol based on spectroscopic methodologies: NMR, circular dichroism and computational tools (DFT, TD-DFT) have been implemented in this scope. In this Thesis are reported the determination of the absolute configuration of: • substituted 1,2,3,4-tetrahydroquinolines; • compounds from enantioselective Friedel-Crafts alkylation-acetalization cascade of naphthols with α,β-unsaturated cyclic ketones; • substituted 3,4-annulated indoles.
Resumo:
Italy has a preeminent rank in kiwifruit industry, being the first exporter and the second largest producer after China. However, in the last years kiwifruit yields and the total cultivated area considerably decreased, due to the pandemic spread of the bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa). Several climatic conditions and cultural practices affect the development of the bacterial canker. This research work focused on the impact of agricultural practices and microclimate conditions on the incidence and epidemiology of Psa in the orchard. Therefore, the effect of fertilization, irrigation, use of bio-regulators, rootstock, training system and pruning were examined. The effect of different tunnel systems was analyzed as well, to study the plant-pathogen interaction. Considering the importance of insects as vectors in other pathosystems, the role of Metcalfa pruinosa in the spread of the bacterial canker was investigated in controlled conditions. In addition, quality and storage properties of fruits from infected plants were assessed. The study of all these aspects of the agronomic practices is useful to define a strategy to limit the bacterial diffusion in the orchard. Overall, excess nitrogen fertilization, water stress, stagnant water supplies, pruning before summer and the high number of Metcalfa pruinosa increased the Psa incidence. In contrast, tunnel covers may be useful for the control of the disease, with special attention to the kind of material.
Resumo:
Nowadays, in developed countries, the excessive food intake, in conjunction with a decreased physical activity, has led to an increase in lifestyle-related diseases, such as obesity, cardiovascular diseases, type -2 diabetes, a range of cancer types and arthritis. The socio-economic importance of such lifestyle-related diseases has encouraged countries to increase their efforts in research, and many projects have been initiated recently in research that focuses on the relationship between food and health. Thanks to these efforts and to the growing availability of technologies, the food companies are beginning to develop healthier food. The necessity of rapid and affordable methods, helping the food industries in the ingredient selection has stimulated the development of in vitro systems that simulate the physiological functions to which the food components are submitted when administrated in vivo. One of the most promising tool now available appears the in vitro digestion, which aims at predicting, in a comparative way among analogue food products, the bioaccessibility of the nutrients of interest.. The adoption of the foodomics approach has been chosen in this work to evaluate the modifications occurring during the in vitro digestion of selected protein-rich food products. The measure of the proteins breakdown was performed via NMR spectroscopy, the only techniques capable of observing, directly in the simulated gastric and duodenal fluids, the soluble oligo- and polypeptides released during the in vitro digestion process. The overall approach pioneered along this PhD work, has been discussed and promoted in a large scientific community, with specialists networked under the INFOGEST COST Action, which recently released a harmonized protocol for the in vitro digestion. NMR spectroscopy, when used in tandem with the in vitro digestion, generates a new concept, which provides an additional attribute to describe the food quality: the comparative digestibility, which measures the improvement of the nutrients bioaccessibility.