32 resultados para Cyber physical systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.