43 resultados para Application methods
Resumo:
In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.
Resumo:
In this thesis two major topics inherent with medical ultrasound images are addressed: deconvolution and segmentation. In the first case a deconvolution algorithm is described allowing statistically consistent maximum a posteriori estimates of the tissue reflectivity to be restored. These estimates are proven to provide a reliable source of information for achieving an accurate characterization of biological tissues through the ultrasound echo. The second topic involves the definition of a semi automatic algorithm for myocardium segmentation in 2D echocardiographic images. The results show that the proposed method can reduce inter- and intra observer variability in myocardial contours delineation and is feasible and accurate even on clinical data.
Resumo:
Here I will focus on three main topics that best address and include the projects I have been working in during my three year PhD period that I have spent in different research laboratories addressing both computationally and practically important problems all related to modern molecular genomics. The first topic is the use of livestock species (pigs) as a model of obesity, a complex human dysfunction. My efforts here concern the detection and annotation of Single Nucleotide Polymorphisms. I developed a pipeline for mining human and porcine sequences. Starting from a set of human genes related with obesity the platform returns a list of annotated porcine SNPs extracted from a new set of potential obesity-genes. 565 of these SNPs were analyzed on an Illumina chip to test the involvement in obesity on a population composed by more than 500 pigs. Results will be discussed. All the computational analysis and experiments were done in collaboration with the Biocomputing group and Dr.Luca Fontanesi, respectively, under the direction of prof. Rita Casadio at the Bologna University, Italy. The second topic concerns developing a methodology, based on Factor Analysis, to simultaneously mine information from different levels of biological organization. With specific test cases we develop models of the complexity of the mRNA-miRNA molecular interaction in brain tumors measured indirectly by microarray and quantitative PCR. This work was done under the supervision of Prof. Christine Nardini, at the “CAS-MPG Partner Institute for Computational Biology” of Shangai, China (co-founded by the Max Planck Society and the Chinese Academy of Sciences jointly) The third topic concerns the development of a new method to overcome the variety of PCR technologies routinely adopted to characterize unknown flanking DNA regions of a viral integration locus of the human genome after clinical gene therapy. This new method is entirely based on next generation sequencing and it reduces the time required to detect insertion sites, decreasing the complexity of the procedure. This work was done in collaboration with the group of Dr. Manfred Schmidt at the Nationales Centrum für Tumorerkrankungen (Heidelberg, Germany) supervised by Dr. Annette Deichmann and Dr. Ali Nowrouzi. Furthermore I add as an Appendix the description of a R package for gene network reconstruction that I helped to develop for scientific usage (http://www.bioconductor.org/help/bioc-views/release/bioc/html/BUS.html).
Resumo:
Researches performed during the PhD course intended to assess innovative applications of near-infrared spectroscopy in reflectance (NIR) in the production chain of beer. The purpose is to measure by NIR the "malting quality" (MQ) parameter of barley, to monitor the malting process and to know if a certain type of barley is suitable for the production of beer and spirits. Moreover, NIR will be applied to monitor the brewing process. First of all, it was possible to check the quality of the raw materials like barley, maize and barley malt using a rapid, non-destructive and reliable method, with a low error of prediction. The more interesting result obtained at this level was that the repeatability of the NIR calibration models developed was comparable with the one of the reference method. Moreover, about malt, new kinds of validation were used in order to estimate the real predictive power of the proposed calibration models and to understand the long-term effects. Furthermore, the precision of all the calibration models developed for malt evaluation was estimated and statistically compared with the reference methods, with good results. Then, new calibration models were developed for monitoring the malting process, measuring the moisture content and other malt quality parameters during germination. Moreover it was possible to obtain by NIR an estimate of the "malting quality" (MQ) of barley and to predict whether if its germination will be rapid and uniform and if a certain type of barley is suitable for the production of beer and spirits. Finally, the NIR technique was applied to monitor the brewing process, using correlations between NIR spectra of beer and analytical parameters, and to assess beer quality. These innovative results are potentially very useful for the actors involved in the beer production chain, especially the calibration models suitable for the control of the malting process and for the assessment of the “malting quality” of barley, which need to be deepened in future studies.
Resumo:
The present work, then, is concerned with the forgotten elements of the Lebanese economy, agriculture and rural development. It investigates the main problematic which arose from these forgotten components, in particular the structure of the agricultural sector, production technology, income distribution, poverty, food security, territorial development and local livelihood strategies. It will do so using quantitative Computable General Equilibrium (CGE) modeling and a qualitative phenomenological case study analysis, both embedded in a critical review of the historical development of the political economy of Lebanon, and a structural analysis of its economy. The research shows that under-development in Lebanese rural areas is not due to lack of resources, but rather is the consequence of political choices. It further suggests that agriculture – in both its mainstream conventional and its innovative locally initiated forms of production – still represents important potential for inducing economic growth and development. In order to do so, Lebanon has to take full advantage of its human and territorial capital, by developing a rural development strategy based on two parallel sets of actions: one directed toward the support of local rural development initiatives, and the other directed toward intensive form of production. In addition to its economic returns, such a strategy would promote social and political stability.
Resumo:
For some study cases (the Cathedral of Modena, Italy, XII-XIV century; the Ducal Palace in Mantua, Italy, XVI century; the church of San Francesco in Fano, Italy, XIV-XIX century), considered as representative of the use of natural and artificial stones in historical architecture, the complex interaction between environ-mental aggressiveness, materials’ microstructural characteristics and degradation was investigated. From the results of such analyses, it was found that materials microstructure plays a fundamental role in the actual extent to which weathering mechanisms affect natural and artificial stones. Consequently, the need of taking into account the important role of material microstructure, when evaluating the environmental aggressiveness to natural and artificial stones, was highlighted. Therefore, a possible quantification of the role of microstructure on the resistance to environmental attack was investigated. By exposing stone samples, with significantly different microstructural features, to slightly acidic aqueous solutions, simulating clean and acid rain, a good correlation between weight losses and the product of carbonate content and specific surface area (defined as the “vulnerable specific surface area”) was found. Alongside the evaluation of stone vulnerability, the development of a new consolidant for weathered carbonate stones was undertaken. The use of hydroxya-patite, formed by reacting the calcite of the stone with an aqueous solution of di-ammonium hydrogen phosphate, was found to be a promising consolidating tech-nique for carbonates stones. Indeed, significant increases in the mechanical prop-erties can be achieved after the treatment, which has the advantage of simply con-sisting in a non-hazardous aqueous solution, able to penetrate deeply into the stone (> 2 cm) and bring significant strengthening after just 2 days of reaction. Furthermore, the stone sorptivity is not eliminated after treatment, so that water and water vapor exchanges between the stone and the environment are not com-pletely blocked.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
Proper ion channels’ functioning is a prerequisite for a normal cell and disorders involving ion channels, or channelopathies, underlie many human diseases. Long QT syndromes (LQTS) for example may arise from the malfunctioning of hERG channel, caused either by the binding of drugs or mutations in HERG gene. In the first part of this thesis I present a framework to investigate the mechanism of ion conduction through hERG channel. The free energy profile governing the elementary steps of ion translocation in the pore was computed by means of umbrella sampling simulations. Compared to previous studies, we detected a different dynamic behavior: according to our data hERG is more likely to mediate a conduction mechanism which has been referred to as “single-vacancy-like” by Roux and coworkers (2001), rather then a “knock-on” mechanism. The same protocol was applied to a model of hERG presenting the Gly628Ser mutation, found to be cause of congenital LQTS. The results provided interesting insights about the reason of the malfunctioning of the mutant channel. Since they have critical functions in viruses’ life cycle, viral ion channels, such as M2 proton channel, are considered attractive targets for antiviral therapy. A deep knowledge of the mechanisms that the virus employs to survive in the host cell is of primary importance in the identification of new antiviral strategies. In the second part of this thesis I shed light on the role that M2 plays in the control of electrical potential inside the virus, being the charge equilibration a condition required to allow proton influx. The ion conduction through M2 was simulated using metadynamics technique. Based on our results we suggest that a potential anion-mediated cation-proton exchange, as well as a direct anion-proton exchange could both contribute to explain the activity of the M2 channel.
Resumo:
The objective of this work of thesis is the refined estimations of source parameters. To such a purpose we used two different approaches, one in the frequency domain and the other in the time domain. In frequency domain, we analyzed the P- and S-wave displacement spectra to estimate spectral parameters, that is corner frequencies and low frequency spectral amplitudes. We used a parametric modeling approach which is combined with a multi-step, non-linear inversion strategy and includes the correction for attenuation and site effects. The iterative multi-step procedure was applied to about 700 microearthquakes in the moment range 1011-1014 N•m and recorded at the dense, wide-dynamic range, seismic networks operating in Southern Apennines (Italy). The analysis of the source parameters is often complicated when we are not able to model the propagation accurately. In this case the empirical Green function approach is a very useful tool to study the seismic source properties. In fact the Empirical Green Functions (EGFs) consent to represent the contribution of propagation and site effects to signal without using approximate velocity models. An EGF is a recorded three-component set of time-histories of a small earthquake whose source mechanism and propagation path are similar to those of the master event. Thus, in time domain, the deconvolution method of Vallée (2004) was applied to calculate the source time functions (RSTFs) and to accurately estimate source size and rupture velocity. This technique was applied to 1) large event, that is Mw=6.3 2009 L’Aquila mainshock (Central Italy), 2) moderate events, that is cluster of earthquakes of 2009 L’Aquila sequence with moment magnitude ranging between 3 and 5.6, 3) small event, i.e. Mw=2.9 Laviano mainshock (Southern Italy).