33 resultados para 3D model acquisition
Resumo:
Three dimensional (3D) printers of continuous fiber reinforced composites, such as MarkTwo (MT) by Markforged, can be used to manufacture such structures. To date, research works devoted to the study and application of flexible elements and CMs realized with MT printer are only a few and very recent. A good numerical and/or analytical tool for the mechanical behavior analysis of the new composites is still missing. In addition, there is still a gap in obtaining the material properties used (e.g. elastic modulus) as it is usually unknown and sensitive to printing parameters used (e.g. infill density), making the numerical simulation inaccurate. Consequently, the aim of this thesis is to present several work developed. The first is a preliminary investigation on the tensile and flexural response of Straight Beam Flexures (SBF) realized with MT printer and featuring different interlayer fiber volume-fraction and orientation, as well as different laminate position within the sample. The second is to develop a numerical analysis within the Carrera' s Unified Formulation (CUF) framework, based on component-wise (CW) approach, including a novel preprocessing tool that has been developed to account all regions printed in an easy and time efficient way. Among its benefits, the CUF-CW approach enables building an accurate database for collecting first natural frequencies modes results, then predicting Young' s modulus based on an inverse problem formulation. To validate the tool, the numerical results are compared to the experimental natural frequencies evaluated using a digital image correlation method. Further, we take the CUF-CW model and use static condensation to analyze smart structures which can be decomposed into a large number of similar components. Third, the potentiality of MT in combination with topology optimization and compliant joints design (CJD) is investigated for the realization of automated machinery mechanisms subjected to inertial loads.
Resumo:
Ground deformation provides valuable insights on subsurface processes with pattens reflecting the characteristics of the source at depth. In active volcanic sites displacements can be observed in unrest phases; therefore, a correct interpretation is essential to assess the hazard potential. Inverse modeling is employed to obtain quantitative estimates of parameters describing the source. However, despite the robustness of the available approaches, a realistic imaging of these reservoirs is still challenging. While analytical models return quick but simplistic results, assuming an isotropic and elastic crust, more sophisticated numerical models, accounting for the effects of topographic loads, crust inelasticity and structural discontinuities, require much higher computational effort and information about the crust rheology may be challenging to infer. All these approaches are based on a-priori source shape constraints, influencing the solution reliability. In this thesis, we present a new approach aimed at overcoming the aforementioned limitations, modeling sources free of a-priori shape constraints with the advantages of FEM simulations, but with a cost-efficient procedure. The source is represented as an assembly of elementary units, consisting in cubic elements of a regular FE mesh loaded with a unitary stress tensors. The surface response due to each of the six stress tensor components is computed and linearly combined to obtain the total displacement field. In this way, the source can assume potentially any shape. Our tests prove the equivalence of the deformation fields due to our assembly and that of corresponding cavities with uniform boundary pressure. Our ability to simulate pressurized cavities in a continuum domain permits to pre-compute surface responses, avoiding remeshing. A Bayesian trans-dimensional inversion algorithm implementing this strategy is developed. 3D Voronoi cells are used to sample the model domain, selecting the elementary units contributing to the source solution and those remaining inactive as part of the crust.
Resumo:
Background There is a wide variation of recurrence risk of Non-small-cell lung cancer (NSCLC) within the same Tumor Node Metastasis (TNM) stage, suggesting that other parameters are involved in determining this probability. Radiomics allows extraction of quantitative information from images that can be used for clinical purposes. The primary objective of this study is to develop a radiomic prognostic model that predicts a 3 year disease free-survival (DFS) of resected Early Stage (ES) NSCLC patients. Material and Methods 56 pre-surgery non contrast Computed Tomography (CT) scans were retrieved from the PACS of our institution and anonymized. Then they were automatically segmented with an open access deep learning pipeline and reviewed by an experienced radiologist to obtain 3D masks of the NSCLC. Images and masks underwent to resampling normalization and discretization. From the masks hundreds Radiomic Features (RF) were extracted using Py-Radiomics. Hence, RF were reduced to select the most representative features. The remaining RF were used in combination with Clinical parameters to build a DFS prediction model using Leave-one-out cross-validation (LOOCV) with Random Forest. Results and Conclusion A poor agreement between the radiologist and the automatic segmentation algorithm (DICE score of 0.37) was found. Therefore, another experienced radiologist manually segmented the lesions and only stable and reproducible RF were kept. 50 RF demonstrated a high correlation with the DFS but only one was confirmed when clinicopathological covariates were added: Busyness a Neighbouring Gray Tone Difference Matrix (HR 9.610). 16 clinical variables (which comprised TNM) were used to build the LOOCV model demonstrating a higher Area Under the Curve (AUC) when RF were included in the analysis (0.67 vs 0.60) but the difference was not statistically significant (p=0,5147).