17 resultados para semi-classical analysis
Resumo:
The aim of this work was to identify markers associated with production traits in the pig genome using different approaches. We focused the attention on Italian Large White pig breed using Genome Wide Association Studies (GWAS) and applying a selective genotyping approach to increase the power of the analyses. Furthermore, we searched the pig genome using Next Generation Sequencing (NSG) Ion Torrent Technology to combine selective genotyping approach and deep sequencing for SNP discovery. Other two studies were carried on with a different approach. Allele frequency changes for SNPs affecting candidate genes and at Genome Wide level were analysed to identify selection signatures driven by selection program during the last 20 years. This approach confirmed that a great number of markers may affect production traits and that they are captured by the classical selection programs. GWAS revealed 123 significant or suggestively significant SNP associated with Back Fat Thickenss and 229 associated with Average Daily Gain. 16 Copy Number Variant Regions resulted more frequent in lean or fat pigs and showed that different copies of those region could have a limited impact on fat. These often appear to be involved in food intake and behavior, beside affecting genes involved in metabolic pathways and their expression. By combining NGS sequencing with selective genotyping approach, new variants where discovered and at least 54 are worth to be analysed in association studies. The study of groups of pigs undergone to stringent selection showed that allele frequency of some loci can drastically change if they are close to traits that are interesting for selection schemes. These approaches could be, in future, integrated in genomic selection plans.
Resumo:
This work is focused on the study of saltwater intrusion in coastal aquifers, and in particular on the realization of conceptual schemes to evaluate the risk associated with it. Saltwater intrusion depends on different natural and anthropic factors, both presenting a strong aleatory behaviour, that should be considered for an optimal management of the territory and water resources. Given the uncertainty of problem parameters, the risk associated with salinization needs to be cast in a probabilistic framework. On the basis of a widely adopted sharp interface formulation, key hydrogeological problem parameters are modeled as random variables, and global sensitivity analysis is used to determine their influence on the position of saltwater interface. The analyses presented in this work rely on an efficient model reduction technique, based on Polynomial Chaos Expansion, able to combine the best description of the model without great computational burden. When the assumptions of classical analytical models are not respected, and this occurs several times in the applications to real cases of study, as in the area analyzed in the present work, one can adopt data-driven techniques, based on the analysis of the data characterizing the system under study. It follows that a model can be defined on the basis of connections between the system state variables, with only a limited number of assumptions about the "physical" behaviour of the system.