20 resultados para optimal linear control design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deal with the design of advanced OFDM systems. Both waveform and receiver design have been treated. The main scope of the Thesis is to study, create, and propose, ideas and novel design solutions able to cope with the weaknesses and crucial aspects of modern OFDM systems. Starting from the the transmitter side, the problem represented by low resilience to non-linear distortion has been assessed. A novel technique that considerably reduces the Peak-to-Average Power Ratio (PAPR) yielding a quasi constant signal envelope in the time domain (PAPR close to 1 dB) has been proposed.The proposed technique, named Rotation Invariant Subcarrier Mapping (RISM),is a novel scheme for subcarriers data mapping,where the symbols belonging to the modulation alphabet are not anchored, but maintain some degrees of freedom. In other words, a bit tuple is not mapped on a single point, rather it is mapped onto a geometrical locus, which is totally or partially rotation invariant. The final positions of the transmitted complex symbols are chosen by an iterative optimization process in order to minimize the PAPR of the resulting OFDM symbol. Numerical results confirm that RISM makes OFDM usable even in severe non-linear channels. Another well known problem which has been tackled is the vulnerability to synchronization errors. Indeed in OFDM system an accurate recovery of carrier frequency and symbol timing is crucial for the proper demodulation of the received packets. In general, timing and frequency synchronization is performed in two separate phases called PRE-FFT and POST-FFT synchronization. Regarding the PRE-FFT phase, a novel joint symbol timing and carrier frequency synchronization algorithm has been presented. The proposed algorithm is characterized by a very low hardware complexity, and, at the same time, it guarantees very good performance in in both AWGN and multipath channels. Regarding the POST-FFT phase, a novel approach for both pilot structure and receiver design has been presented. In particular, a novel pilot pattern has been introduced in order to minimize the occurrence of overlaps between two pattern shifted replicas. This allows to replace conventional pilots with nulls in the frequency domain, introducing the so called Silent Pilots. As a result, the optimal receiver turns out to be very robust against severe Rayleigh fading multipath and characterized by low complexity. Performance of this approach has been analytically and numerically evaluated. Comparing the proposed approach with state of the art alternatives, in both AWGN and multipath fading channels, considerable performance improvements have been obtained. The crucial problem of channel estimation has been thoroughly investigated, with particular emphasis on the decimation of the Channel Impulse Response (CIR) through the selection of the Most Significant Samples (MSSs). In this contest our contribution is twofold, from the theoretical side, we derived lower bounds on the estimation mean-square error (MSE) performance for any MSS selection strategy,from the receiver design we proposed novel MSS selection strategies which have been shown to approach these MSE lower bounds, and outperformed the state-of-the-art alternatives. Finally, the possibility of using of Single Carrier Frequency Division Multiple Access (SC-FDMA) in the Broadband Satellite Return Channel has been assessed. Notably, SC-FDMA is able to improve the physical layer spectral efficiency with respect to single carrier systems, which have been used so far in the Return Channel Satellite (RCS) standards. However, it requires a strict synchronization and it is also sensitive to phase noise of local radio frequency oscillators. For this reason, an effective pilot tone arrangement within the SC-FDMA frame, and a novel Joint Multi-User (JMU) estimation method for the SC-FDMA, has been proposed. As shown by numerical results, the proposed scheme manages to satisfy strict synchronization requirements and to guarantee a proper demodulation of the received signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Next generation electronic devices have to guarantee high performance while being less power-consuming and highly reliable for several application domains ranging from the entertainment to the business. In this context, multicore platforms have proven the most efficient design choice but new challenges have to be faced. The ever-increasing miniaturization of the components produces unexpected variations on technological parameters and wear-out characterized by soft and hard errors. Even though hardware techniques, which lend themselves to be applied at design time, have been studied with the objective to mitigate these effects, they are not sufficient; thus software adaptive techniques are necessary. In this thesis we focus on multicore task allocation strategies to minimize the energy consumption while meeting performance constraints. We firstly devise a technique based on an Integer Linear Problem formulation which provides the optimal solution but cannot be applied on-line since the algorithm it needs is time-demanding; then we propose a sub-optimal technique based on two steps which can be applied on-line. We demonstrate the effectiveness of the latter solution through an exhaustive comparison against the optimal solution, state-of-the-art policies, and variability-agnostic task allocations by running multimedia applications on the virtual prototype of a next generation industrial multicore platform. We also face the problem of the performance and lifetime degradation. We firstly focus on embedded multicore platforms and propose an idleness distribution policy that increases core expected lifetimes by duty cycling their activity; then, we investigate the use of micro thermoelectrical coolers in general-purpose multicore processors to control the temperature of the cores at runtime with the objective of meeting lifetime constraints without performance loss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the study of optimal control problems for the incompressible Magnetohydrodynamics (MHD) equations. Particular attention to these problems arises from several applications in science and engineering, such as fission nuclear reactors with liquid metal coolant and aluminum casting in metallurgy. In such applications it is of great interest to achieve the control on the fluid state variables through the action of the magnetic Lorentz force. In this thesis we investigate a class of boundary optimal control problems, in which the flow is controlled through the boundary conditions of the magnetic field. Due to their complexity, these problems present various challenges in the definition of an adequate solution approach, both from a theoretical and from a computational point of view. In this thesis we propose a new boundary control approach, based on lifting functions of the boundary conditions, which yields both theoretical and numerical advantages. With the introduction of lifting functions, boundary control problems can be formulated as extended distributed problems. We consider a systematic mathematical formulation of these problems in terms of the minimization of a cost functional constrained by the MHD equations. The existence of a solution to the flow equations and to the optimal control problem are shown. The Lagrange multiplier technique is used to derive an optimality system from which candidate solutions for the control problem can be obtained. In order to achieve the numerical solution of this system, a finite element approximation is considered for the discretization together with an appropriate gradient-type algorithm. A finite element object-oriented library has been developed to obtain a parallel and multigrid computational implementation of the optimality system based on a multiphysics approach. Numerical results of two- and three-dimensional computations show that a possible minimum for the control problem can be computed in a robust and accurate manner.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis deals with the analytic study of dynamics of Multi--Rotor Unmanned Aerial Vehicles. It is conceived to give a set of mathematical instruments apt to the theoretical study and design of these flying machines. The entire work is organized in analogy with classical academic texts about airplane flight dynamics. First, the non--linear equations of motion are defined and all the external actions are modeled, with particular attention to rotors aerodynamics. All the equations are provided in a form, and with personal expedients, to be directly exploitable in a simulation environment. This has requited an answer to questions like the trim of such mathematical systems. All the treatment is developed aiming at the description of different multi--rotor configurations. Then, the linearized equations of motion are derived. The computation of the stability and control derivatives of the linear model is carried out. The study of static and dynamic stability characteristics is, thus, addressed, showing the influence of the various geometric and aerodynamic parameters of the machine and in particular of the rotors. All the theoretic results are finally utilized in two interesting cases. One concerns the design of control systems for attitude stabilization. The linear model permits the tuning of linear controllers gains and the non--linear model allows the numerical testing. The other case is the study of the performances of an innovative configuration of quad--rotor aircraft. With the non--linear model the feasibility of maneuvers impossible for a traditional quad--rotor is assessed. The linear model is applied to the controllability analysis of such an aircraft in case of actuator block.