20 resultados para model-oriented development


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Atrial fibrillation is associated with a five-fold increase in the risk of cerebrovascular events,being responsible of 15-18% of all strokes.The morphological and functional remodelling of the left atrium caused by atrial fibrillation favours blood stasis and, consequently, stroke risk. In this context, several clinical studies suggest that stroke risk stratification could be improved by using haemodynamic information on the left atrium (LA) and the left atrial appendage (LAA). The goal of this study was to develop a personalized computational fluid-dynamics (CFD) model of the left atrium which could clarify the haemodynamic implications of atrial fibrillation on a patient specific basis. The developed CFD model was first applied to better understand the role of LAA in stroke risk. Infact, the interplay of the LAA geometric parameters such as LAA length, tortuosity, surface area and volume with the fluid-dynamics parameters and the effects of the LAA closure have not been investigated. Results demonstrated the capabilities of the CFD model to reproduce the real physiological behaviour of the blood flow dynamics inside the LA and the LAA. Finally, we determined that the fluid-dynamics parameters enhanced in this research project could be used as new quantitative indexes to describe the different types of AF and open new scenarios for the patient-specific stroke risk stratification.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer represents one of the most relevant and widespread diseases in the modern age. In this context, integrin receptors are important for the interactions of cells with extracellular matrix and for the development of both inflammation and carcinogenic phenomena. There are many tricks to improve the bioactivity and receptor selectivity of exogenous ligands; one of these is to integrate the amino acid sequence into a cyclic peptide to restrict its conformational space. Another approach is to develop small peptidomimetic molecules in order to enhance the molecular stability and open the way to versatile synthetic strategies. Starting from isoxazoline-based peptidomimetic molecules we recently reported, in this thesis we are going to present the synthesis of new integrin ligands obtained by modifying or introducing appendages on already reported structures. Initially, we are going to introduce the synthesis of linear and cyclic α-dehydro-β-amino acids as scaffolds for the preparation of bioactive peptidomimetics. Subsequently, we are going to present the construction of small molecule ligands (SMLs) based delivery systems performed starting from a polyfunctionalised isoxazoline scaffold, whose potency towards αVβ3 and α5β1 integrins has already been established by our research group. In the light of these results and due to the necessity to understand the behaviour of a single enantiomer of the isoxazoline-based compounds, the research group decided to synthesise the enantiopure heterocycle using a 1,3-dipolar cycloaddiction approach. Subsequently, we are going to introduce the synthesis of a Reporting Drug Delivery System composed by a carrier, a first spacer, a linker, a self-immolative system, a second spacer and a latent fluorophore. The last part of this work will describe the results obtained during the internship abroad in Prof. Aggarwal’s laboratory at the University of Bristol. The project was focused on the Mycapolyol A synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary glioblastoma (GB), the most common and aggressive adult brain tumour, is refractory to conventional therapies and characterised by poor prognosis. GB displays striking cellular heterogeneity, with a sub-population, called Glioblastoma Stem Cells (GSCs), intrinsically resistant to therapy, hence the high rate of recurrence. Alterations of the tumour suppressor gene PTEN are prevalent in primary GBM, resulting in the inhibition of the polarity protein Lgl1 due to aPKC hyperactivation. Dysregulation of this molecular axis is one of the mechanisms involved in GSC maintenance. After demonstrating that the PTEN/aPKC/Lgl axis is conserved in Drosophila, I deregulated it in different cells populations of the nervous system in order to individuate the cells at the root of neurogenic brain cancers. This analysis identified the type II neuroblasts (NBs) as the most sensitive to alterations of this molecular axis. Type II NBs are a sub-population of Drosophila stem cells displaying a lineage similar to that of the mammalian neural stem cells. Following aPKC activation in these stem cells, I obtained an adult brain cancer model in Drosophila that summarises many phenotypic traits of human brain tumours. Fly tumours are indeed characterised by accumulation of highly proliferative immature cells and keep growing in the adult leading the affected animals to premature death. With the aim to understand the role of cell polarity disruption in this tumorigenic process I carried out a molecular characterisation and transcriptome analysis of brain cancers from our fly model. In summary, the model I built and partially characterised in this thesis work may help deepen our knowledge on human brain cancers by investigating many different aspects of this complicate disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Around 5 million women give birth each year in Europe and, while breastfeeding, the majority of them may need to take medications, either occasionally or continuously. Unfortunately, there is often scarce evidence of trustworthy information about how a specific molecule might affect the physiology of lactation. This is the reason that brought a European public-private partnership to fund the development of a reliable platform to provide women and health-care professionals a helpful instrument to reduce uncertainty about the effects of medication used during breastfeeding. On April 1st 2019, the ConcePTION project (Grant Agreement n°821520) started to develop such envisaged platform. The 3rd Work Package was in charge of the validation of in vitro, in vivo and in silico lactation models. Between the numerous species currently used in preclinical studies, pigs’ similarities with humans’ anatomy, physiology and genomics make them extremely useful as translational models, when proper veterinary expertise is applied. The ASA team from the University of Bologna, went first to characterize the translational lactation model using the swine species, chosen upon literature review. The aim of this work was to lay the foundations of a porcine lactation model that could be suitable for application within pharmaceutical tests, to study drug transfer through milk prior approval and commercialization. The obtained results highlighted both strengths and critical points of the study design, allowing a significant improvement in the knowledge of pharmacokinetic physiology in lactating mammals. Lastly, this project allowed the assessment of microbial changes in gut resident bacteria of newborns through an innovative in vitro colonic model. Indeed, even if there were no evident adverse effects determined by drug residues in milk, possible alterations in the delicate microbial ecology of newborns’ gastrointestinal tract was considered pivotal, giving its possible impact on the individual health and growth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.