18 resultados para microcantilever sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wearable inertial and magnetic measurements units (IMMU) are an important tool for underwater motion analysis because they are swimmer-centric, they require only simple measurement set-up and they provide the performance results very quickly. In order to estimate 3D joint kinematics during motion, protocols were developed to transpose the IMMU orientation estimation to a biomechanical model. The aim of the thesis was to validate a protocol originally propositioned to estimate the joint angles of the upper limbs during one-degree-of-freedom movements in dry settings and herein modified to perform 3D kinematics analysis of shoulders, elbows and wrists during swimming. Eight high-level swimmers were assessed in the laboratory by means of an IMMU while simulating the front crawl and breaststroke movements. A stereo-photogrammetric system (SPS) was used as reference. The joint angles (in degrees) of the shoulders (flexion-extension, abduction-adduction and internal-external rotation), the elbows (flexion-extension and pronation-supination), and the wrists (flexion-extension and radial-ulnar deviation) were estimated with the two systems and compared by means of root mean square errors (RMSE), relative RMSE, Pearson’s product-moment coefficient correlation (R) and coefficient of multiple correlation (CMC). Subsequently, the athletes were assessed during pool swimming trials through the IMMU. Considering both swim styles and all joint degrees of freedom modeled, the comparison between the IMMU and the SPS showed median values of RMSE lower than 8°, representing 10% of overall joint range of motion, high median values of CMC (0.97) and R (0.96). These findings suggest that the protocol accurately estimated the 3D orientation of the shoulders, elbows and wrists joint during swimming with accuracy adequate for the purposes of research. In conclusion, the proposed method to evaluate the 3D joint kinematics through IMMU was revealed to be a useful tool for both sport and clinical contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates interactive scene reconstruction and understanding using RGB-D data only. Indeed, we believe that depth cameras will still be in the near future a cheap and low-power 3D sensing alternative suitable for mobile devices too. Therefore, our contributions build on top of state-of-the-art approaches to achieve advances in three main challenging scenarios, namely mobile mapping, large scale surface reconstruction and semantic modeling. First, we will describe an effective approach dealing with Simultaneous Localization And Mapping (SLAM) on platforms with limited resources, such as a tablet device. Unlike previous methods, dense reconstruction is achieved by reprojection of RGB-D frames, while local consistency is maintained by deploying relative bundle adjustment principles. We will show quantitative results comparing our technique to the state-of-the-art as well as detailed reconstruction of various environments ranging from rooms to small apartments. Then, we will address large scale surface modeling from depth maps exploiting parallel GPU computing. We will develop a real-time camera tracking method based on the popular KinectFusion system and an online surface alignment technique capable of counteracting drift errors and closing small loops. We will show very high quality meshes outperforming existing methods on publicly available datasets as well as on data recorded with our RGB-D camera even in complete darkness. Finally, we will move to our Semantic Bundle Adjustment framework to effectively combine object detection and SLAM in a unified system. Though the mathematical framework we will describe does not restrict to a particular sensing technology, in the experimental section we will refer, again, only to RGB-D sensing. We will discuss successful implementations of our algorithm showing the benefit of a joint object detection, camera tracking and environment mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Movement analysis carried out in laboratory settings is a powerful, but costly solution since it requires dedicated instrumentation, space and personnel. Recently, new technologies such as the magnetic and inertial measurement units (MIMU) are becoming widely accepted as tools for the assessment of human motion in clinical and research settings. They are relatively easy-to-use and potentially suitable for estimating gait kinematic features, including spatio-temporal parameters. The objective of this thesis regards the development and testing in clinical contexts of robust MIMUs based methods for assessing gait spatio-temporal parameters applicable across a number of different pathological gait patterns. First, considering the need of a solution the least obtrusive as possible, the validity of the single unit based approach was explored. A comparative evaluation of the performance of various methods reported in the literature for estimating gait temporal parameters using a single unit attached to the trunk first in normal gait and then in different pathological gait conditions was performed. Then, the second part of the research headed towards the development of new methods for estimating gait spatio-temporal parameters using shank worn MIMUs on different pathological subjects groups. In addition to the conventional gait parameters, new methods for estimating the changes of the direction of progression were explored. Finally, a new hardware solution and relevant methodology for estimating inter-feet distance during walking was proposed. Results of the technical validation of the proposed methods at different walking speeds and along different paths against a gold standard were reported and showed that the use of two MIMUs attached to the lower limbs associated with a robust method guarantee a much higher accuracy in determining gait spatio-temporal parameters. In conclusion, the proposed methods could be reliably applied to various abnormal gaits obtaining in some cases a comparable level of accuracy with respect to normal gait.