16 resultados para macroscopic traffic flow models
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Aston University Research Archive (45)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (120)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- CentAUR: Central Archive University of Reading - UK (60)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (26)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (7)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons at Florida International University (45)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (41)
- DRUM (Digital Repository at the University of Maryland) (8)
- Duke University (3)
- eScholarship Repository - University of California (1)
- FUNDAJ - Fundação Joaquim Nabuco (4)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (4)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (37)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico da Universidade de Évora - Portugal (5)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositorio de la Universidad de Cuenca (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (45)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (10)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (55)
- Universidade do Minho (13)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (44)
- Université de Montréal (3)
- Université de Montréal, Canada (7)
- University of Michigan (92)
- University of Queensland eSpace - Australia (38)
- University of Washington (4)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this thesis, the viability of the Dynamic Mode Decomposition (DMD) as a technique to analyze and model complex dynamic real-world systems is presented. This method derives, directly from data, computationally efficient reduced-order models (ROMs) which can replace too onerous or unavailable high-fidelity physics-based models. Optimizations and extensions to the standard implementation of the methodology are proposed, investigating diverse case studies related to the decoding of complex flow phenomena. The flexibility of this data-driven technique allows its application to high-fidelity fluid dynamics simulations, as well as time series of real systems observations. The resulting ROMs are tested against two tasks: (i) reduction of the storage requirements of high-fidelity simulations or observations; (ii) interpolation and extrapolation of missing data. The capabilities of DMD can also be exploited to alleviate the cost of onerous studies that require many simulations, such as uncertainty quantification analysis, especially when dealing with complex high-dimensional systems. In this context, a novel approach to address parameter variability issues when modeling systems with space and time-variant response is proposed. Specifically, DMD is merged with another model-reduction technique, namely the Polynomial Chaos Expansion, for uncertainty quantification purposes. Useful guidelines for DMD deployment result from the study, together with the demonstration of its potential to ease diagnosis and scenario analysis when complex flow processes are involved.