18 resultados para gold nanoparticles glucaric acid heterogeneous catalysis glucose oxidation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to match the more stringent environmental regulations, heterogenization of traditional homogeneous processes is one of the main challenges of the modern chemical industry. Great results have been achieved in the fields of petrochemicals and base chemicals, whereas in fine chemical industry most of the synthetic procedures are based on multistep processes catalyzed by homogeneous catalysts mainly used in stoichiometric amounts. In the fine chemicals manufacture not so much efforts have been devoted to the investigation of suitable solid catalysts for the development of greener processes, then this sector represent a very attractive field of research. In this context, the present work deals with the extensive investigation of the possibility to heterogenize existing processes, in particular two different classes of reactions have been studied: alkylation of aromatic and heteroaromatic compounds and selective oxidation of aromatic alcohols. Traditional solid acid catalysts, such as zeolites, clays and alumina have been tested in the gas phase alkylation of 1,2-methylendioxybenzene, core building block of many drugs, pesticides and fragrances. The observed reactivity were clarified through a deep FTIR investigation complemented by ab initio calculation. The same catalysts were tested in the gas phase isopropylation of thiophene with the aim of clearly attribute the role of the reaction parameters in the reaction proceeding and verify the possibility to enhance the selectivity of one of the two possible isomers. Finally various Au/CeO2 catalysts were tested in the synthesis of benzaldehyde and piperonal, two aldehydes largely employed in the manufacture of fine chemical products, through liquid phase oxidation of the corresponding alcohols in very mild conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This PhD thesis summarize the work carried out during three years of PhD course. Several thematic concerning gold(I) chemistry are analysed by crossing data from different chemistry areas as: organic chemistry, organometallic chemistry, inorganic chemistry and computational chemistry. In particular, the thesis focuses its attention on the evaluation of secondary electronic interactions, subsisting between ligand and Au(I) metal centre in the catalyst, and their effects on catalytic activity. The interaction that has been taken in consideration is the Au…Ar π-interaction which is known to prevent the decomposition of catalyst, but exhaustive investigations of further effects has never been done so far. New libraries of carbene (ImPy) and biarylphosphine ligands have been designed and synthetized for the purpose and subsequently utilized for the synthesis of corresponding Au(I) complexes. Resulting catalysts are tested in various catalytic processes involving different intermediates and in combination with solid state information from SC-XRD revealed an unprecedented activation mode which is only explained by considering both electronic nature and strength of Au…Ar π-interaction. DFT calculation carried on catalysis intermediates are in agreement with experimental ones, giving robustness to the theory. Moreover, a new synthetic protocol for the lactonization of N-allenyl indole-2-carboxylic acids is presented. Reaction conditions are optimized with the newly synthetized ImPy-Au(I) catalysts and different substrates are also tested providing a quite broad reaction scope. Chiral ImPy ligands have also been developed for the asymmetric variant of the same reaction and encouraging enantiomeric excess are obtained.