22 resultados para gas production technique
Resumo:
Against a backdrop of rapidly increasing worldwide population and growing energy demand, the development of renewable energy technologies has become of primary importance in the effort to reduce greenhouse gas emissions. However, it is often technically and economically infeasible to transport discontinuous renewable electricity for long distances to the shore. Another shortcoming of non-programmable renewable power is its integration into the onshore grid without affecting the dispatching process. On the other hand, the offshore oil & gas industry is striving to reduce overall carbon footprint from onsite power generators and limiting large expenses associated to carrying electricity from remote offshore facilities. Furthermore, the increased complexity and expansion towards challenging areas of offshore hydrocarbons operations call for higher attention to safety and environmental protection issues from major accident hazards. Innovative hybrid energy systems, as Power-to-Gas (P2G), Power-to-Liquid (P2L) and Gas-to-Power (G2P) options, implemented at offshore locations, would offer the opportunity to overcome challenges of both renewable and oil & gas sectors. This study aims at the development of systematic methodologies based on proper sustainability and safety performance indicators supporting the choice of P2G, P2L and G2P hybrid energy options for offshore green projects in early design phases. An in-depth analysis of the different offshore hybrid strategies was performed. The literature reviews on existing methods proposing metrics to assess sustainability of hybrid energy systems, inherent safety of process routes in conceptual design stage and environmental protection of installations from oil and chemical accidental spills were carried out. To fill the gaps, a suite of specific decision-making methodologies was developed, based on representative multi-criteria indicators addressing technical, economic, environmental and societal aspects of alternative options. A set of five case-studies was defined, covering different offshore scenarios of concern, to provide an assessment of the effectiveness and value of the developed tools.
Resumo:
Pure hydrogen production from methane is a multi-step process run on a large scale for economic reasons. However, hydrogen can be produced in a one-pot continuous process for small scale applications, namely Low Temperature Steam Reforming. Here, Steam Reforming is carried out in a reactor whose walls are composed by a membrane selective toward hydrogen. Pd is the most used membrane material due to its high permeability and selectivity. However, Pd deteriorates at temperatures higher than 500°C, thus the operative temperature of the reaction has to be lowered. However, the employment of a membrane reactor may allow to give high yields thanks to hydrogen removal, which shifts the reaction toward the products. Moreover, pure hydrogen is produced. This work is concentrated on the synthesis of a catalytic system and the investigation of its performances in different processes, namely oxy-reforming, steam reforming and water gas shift, to find appropriate conditions for hydrogen production in a catalytic membrane reactor. The catalyst supports were CeZr and Zr oxides synthesized by microemulsion, impregnated with different noble metals. Pt, Rh and PtRh based catalysts were tested in the oxy reforming process at 500°C, where Rh on CeZr gave the most interesting results. On the opposite, the best performances in low temperature steam reforming were obtained with Rh impregnated on Zr oxide. This catalyst was selected to perform low temperature steam reforming in a Pd membrane reactor. The hydrogen removal given by the membrane allowed to increase the methane conversion over the equilibrium of a classical fixed bed reactor thanks to an equilibrium shift effect. High hydrogen production and recoveries were also obtained, and no other compound permeated through the membrane which proved to be hydrogen selective.
Resumo:
Dans l’Antiquité, la recherche sur la technique permet les premières réalisations de dispositifs ingénieux, tels que des appareils qui accomplissent une série d’actions par le biais de stimulus externes et de mécanismes cachés. Les organismes politiques et religieux saisissent rapidement la puissance communicative de ces machines, en devenant les promoteurs et patrons privilégiés de leur production. L’Empire sassanide (224-650) ne constitue pas une exception. En effet, les souverains perses consacrent, au moins à l’époque tardive, une grande attention à la conception et au déploiement de dispositifs savants. De même, un siècle plus tard, dans le milieu du califat islamique, les Abbassides (750-1258) semblent s’entourer de tels dispositifs. La continuité entre les deux empires dans plusieurs domaines, de la théorie politique à l’administration, est bien connue. Cependant, la question de la réutilisation du patrimoine technique et scientifique ancien, et notamment sassanide, par la cour abbasside, demeure encore largement inexplorée. L’étude d’un corpus de sources, aussi vaste qu’hétérogène, rassemblant des ouvrages historiographiques, géographiques, poétiques et d’adab, ainsi que des traités scientifiques et techniques en plusieurs langues, permet d’analyser différents aspects de la production et de l’usage politique des machines. Au sein de la cour sassanide, comme de la cour abbasside, la machine s’avère constituer un véhicule préférentiel de représentation et de diffusion de l’idéologie politique. À travers sa mise en scène publique, elle contribue de manière substantielle à la définition de l’espace du pouvoir, en participant à la création d’une image de la cour comme un microcosme au cœur duquel le Roi des rois, et plus tard le calife, occupaient le rôle cardinal de maître incontesté du monde. La continuité entre les empires sassanide et abbasside dans le domaine technique ne se limite donc pas à une récupération de savoirs, mais s’opère aussi sous la forme d’une véritable réactivation d’un patrimoine symbolique
Resumo:
This work resumes a wide variety of research activities carried out with the main objective of increasing the efficiency and reducing the fuel consumption of Gasoline Direct Injection engines, especially under high loads. For this purpose, two main innovative technologies have been studied, Water Injection and Low-Pressure Exhaust Gas Recirculation, which help to reduce the temperature of the gases inside the combustion chamber and thus mitigate knock, being this one of the main limiting factors for the efficiency of modern downsized engines that operate at high specific power. A prototypal Port Water Injection system was developed and extensive experimental work has been carried out, initially to identify the benefits and limitations of this technology. This led to the subsequent development and testing of a combustion controller, which has been implemented on a Rapid Control Prototyping environment, capable of managing water injection to achieve knock mitigation and a more efficient combustion phase. Regarding Low-Pressure Exhaust Gas Recirculation, a commercial engine that was already equipped with this technology was used to carry out experimental work in a similar fashion to that of water injection. Another prototypal water injection system has been mounted to this second engine, to be able to test both technologies, at first separately to compare them on equal conditions, and secondly together in the search of a possible synergy. Additionally, based on experimental data from several engines that have been tested during this study, including both GDI and GCI engines, a real-time model (or virtual sensor) for the estimation of the maximum in-cylinder pressure has been developed and validated. This parameter is of vital importance to determine the speed at which damage occurs on the engine components, and therefore to extract the maximum performance without inducing permanent damages.
Resumo:
Power-to-Gas storage systems have the potential to address grid-stability issues that arise when an increasing share of power is generated from sources that have a highly variable output. Although the proof-of-concept of these has been promising, the behaviour of the processes in off-design conditions is not easily predictable. The primary aim of this PhD project was to evaluate the performance of an original Power-to-Gas system, made up of innovative components. To achieve this, a numerical model has been developed to simulate the characteristics and the behaviour of the several components when the whole system is coupled with a renewable source. The developed model has been applied to a large variety of scenarios, evaluating the performance of the considered process and exploiting a limited amount of experimental data. The model has been then used to compare different Power-to-Gas concepts, in a real scenario of functioning. Several goals have been achieved. In the concept phase, the possibility to thermally integrate the high temperature components has been demonstrated. Then, the parameters that affect the energy performance of a Power-to-Gas system coupled with a renewable source have been identified, providing general recommendations on the design of hybrid systems; these parameters are: 1) the ratio between the storage system size and the renewable generator size; 2) the type of coupled renewable source; 3) the related production profile. Finally, from the results of the comparative analysis, it is highlighted that configurations with a highly oversized renewable source with respect to the storage system show the maximum achievable profit.
Resumo:
Aedes albopictus is a vector able to transmit several arboviruses. Due to its high impact on human health, it is important to develop an efficient control strategy for this pest. Nowadays, control based on chemical insecticides is limited by the number of available active principles and the occurrence of resistance. A valuable alternative to the conventional control strategies is the sterile insect technique (SIT) which relies on releasing sterile males of the target insect. Mating between wild females and sterile males results in no viable offspring. A crucial aspect of SIT is the production of a large number of sterile males with a low presence of females that can bite and transmit viruses. The present thesis aimed to find, implement and study the most reliable mechanical sex sorter and protocol to implement male productivity and reduce female contamination. In addition, I evaluated different variables and sorting protocols to enable female recovery for breeding purposes. Furthermore, I studied the creation of a hyper-protandric strain potentially able to produce only males. I also assessed the integration of artificial intelligence with an optical unit to identify sexes at the adult stage. All these applications helped to realise a mass production model in Italy with a potential weekly production of 1 million males. Moreover, I studied and applied for aerial sterile male release in an urban environment. This technology could allow the release of males in a wide area, overcoming environmental and urban obstacles. However, the development and application of drone technologies in a metropolitan area close to airports, such as in Bologna area, must fit specific requirements. Lastly, at Réunion Island, during a Short Term Scientific Mission France (AIM-COST Action), Indian Ocean, I studied the Boosted SIT application. Coating sterile males with Pyriproxyfen may help spread the insecticide into the larval breeding sites.
Resumo:
Fruit crops are an important resource for food security, since more than being nutrient they are also a source of natural antioxidant compounds, such as polyphenols and vitamins. However, fruit crops are also among the cultivations threatened by the harmful effects of climate change This study had the objective of investigating the physiological effects of deficit irrigation on apple (2020-2021), sour cherry (2020-2021-2022) and apricot (2021-2022) trees, with a special focus on fruit nutraceutical quality. On each trial, the main physiological parameters were monitored along the growing season: i) stem and leaf water potentials; ii) leaf gas exchanges; iii) fruit and shoot growth. At harvest, fruit quality was evaluated especially in terms of fruit size, flesh firmness and soluble solids content. Moreover, it was performed: i) total phenolic content determination; ii) anthocyanidin concentration evaluation; and iii) untargeted metabolomic study. Irrigation scheduling in apricot, apple and sour cherry is surely overestimated by the decision support system available in Emilia-Romagna region. The water stress imposed on different fruit crops, each during two years of study, showed as a general conclusion that the decrease in the irrigation water did not show a straightforward decrease in plant physiological performance. This can be due to the miscalculation of the real water needs of the considered fruit crops. For this reason, there is the need to improve this important tool for an appropriate water irrigation management. Furthermore, there is also the need to study the behaviour of fruit crops under more severe deficit irrigations. In fact, it is likely that the application of lower water amounts will enhance the synthesis of specialized metabolites, with positive repercussion on human health. These hypotheses must be verified.